Skip to main content

Symmetric Matrices

Say we have a n×nn\times n matrix AA and aijRa_{ij}\in\mathbb{R}.
AA is symmetric if A=ATA=A^T

A=[a11a12a1na21a22a2nan1an2ann]aij=ajiA=\begin{bmatrix} a_{11} & \color{red}{a_{12}} & \cdots & \color{blue}{a_{1n}} \\ \color{red}{a_{21}} & a_{22} & \cdots & \color{darkgreen}{a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \color{blue}{a_{n1}} & \color{darkgreen}{a_{n2}} & \cdots & a_{nn} \\ \end{bmatrix} \\ \quad \\ a_{ij}=a_{ji}

Properties of Symmetric matrices

info

1.1.\quad Eigenvalues of symmetric matrices are real

Explanation:

note

Say λC\lambda\in\mathbb{C} is the eigenvalues and xCnx\in\mathbb{C}^n is the eigenvector of matrix AA so,
(Here C\mathbb{C} represent Complex numbers)

  • Ax=λxAx=\lambda x
(x)TAx=λ (x)Tx(1)\Rightarrow \left(\overline{x}\right)^TAx=\lambda\ (\overline{x})^Tx \quad\tag{\color{red}{1}}

(( And this bar(   \overline{ \ \ } ) means that we are taking conjugate of complex number, like, a+ib=aib)\overline{a+ib}=a-ib)

  • Ax=λxAx=\lambda xA x=λ x\Rightarrow \overline{A}\ \overline{x}=\overline{\lambda}\ \overline{x}
    because element of AA are Real numbers so $ \overline{A}=A$
    A x=λ x\Rightarrow A\ \overline{x}=\overline{\lambda}\ \overline{x}
    (A x)T=(λ x)T\Rightarrow (A\ \overline{x})^T=(\overline{\lambda}\ \overline{x})^T
    (x)TAT=λ (x)T\displaystyle \Rightarrow \left(\overline{x}\right)^TA^T=\overline{\lambda}\ (\overline{x})^T
    because AA is a symmetric matrix so,
    (x)TA=λ (x)T\displaystyle \Rightarrow \left(\overline{x}\right)^TA=\overline{\lambda}\ (\overline{x})^T
(x)TAx=λ (x)Tx(2)\Rightarrow \left(\overline{x}\right)^TAx=\overline{\lambda}\ (\overline{x})^Tx \quad\tag{\color{red}{2}}

Using above equations (1)({\color{red}{1}}) and (2)({\color{red}{2}}) we can say that,
λ (x)Tx=λ (x)Tx\lambda\ (\overline{x})^Tx = \overline{\lambda}\ (\overline{x})^Tx

λ=λ\Rightarrow \lambda=\overline{\lambda}

It is only possible if complex part of λ\lambda is 00 so eigenvalues are indeed Real. ✓


info

2.2.\quad For a symmetric matrix we can get orthonormal eigenvectors

Explanation:

note

Say q1,q2,,qn\vec{q}_1, \vec{q}_2, \cdots, \vec{q}_n are eigenvectors of AA
Say,

Q=[q1q2qn]Q=\begin{bmatrix} \vdots & \vdots & & \vdots \\ q_1 & q_2 & \cdots & q_n \\ \vdots & \vdots & & \vdots \\ \end{bmatrix}

So A=QΛQ1A=Q\Lambda Q^{-1} we discussed it HERE
And because QQ is an orthonormal matrix so Q1=QTQ^{-1}=Q^T we discussed it HERE so,

danger
A=QΛQT\begin{matrix} A=Q\Lambda Q^{T} \end{matrix}
note

So we can write it as,

A=[q1q2qn][λ1000λ2000λn][q1q2qn]A= \begin{bmatrix} \vdots & \vdots & & \vdots \\ \vec{q}_{1} & \vec{q}_{2} & \cdots & \vec{q}_{n} \\ \vdots & \vdots & & \vdots \\ \end{bmatrix} {\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{bmatrix}} \begin{bmatrix} \cdots q_1 \cdots\\ \cdots q_2 \cdots\\ \vdots\\ \cdots q_n \cdots\\ \end{bmatrix}

So,

danger
A=λ1q1q1T+λ2q2q2T++λnqnqnT\begin{matrix} \displaystyle A=\lambda_1q_1q_1^T + \lambda_2q_2q_2^T + \cdots + \lambda_nq_nq_n^T \end{matrix}
note

Here all qiq_i's are orthonormal vectors so qiqiTq_iq_i^T is a projection matrix so we can say that,

AA is the combination of orthogonal projection matrices.

(we talked about Orthogonal Subspaces HERE)


info

3.3.\quad For a symmetric matrix signs of pivots are same as signs of eigenvalues

Explanation:

note

Say that we have a 50×5050\times 50 symmetric matrix and we just want to know there signs.
In differential equation we saw that knowing just the signs of eigenvalues are important, it tells us about the state of the system.
Here we can't go for det(AλI)=0\text{det}(A-\lambda\mathcal{I})=0, because it will give us a 5050 degree polynomial, and we can spend lifetime solving this.
So what we do instead is we find 5050 pivots and find number of positive pivots and number of negative pivots.
And for a Symmetric matrix,

  • #\mathbf{\#} of positive pivots == #\mathbf{\#} of positive eigenvalues
  • #\mathbf{\#} of negative pivots == #\mathbf{\#} of negative eigenvalues

Positive Definite Symmetric Matrices

Facts:
For a Symmetric Matrix to be Positive Definite all eigenvalues must be positive.
If all eigenvalues are positive then all pivots are also positive.
For a Symmetric Matrix to be Positive Definite all leading determinant must be positive.