Skip to main content

Similar Matrices

Say we have two n×nn\times n square matrices AA and BB.
AA and BB are similar matrices if there exists some MM such that,

B=M1AM\begin{matrix} B=M^{-1}AM \end{matrix}
info

Λ\Lambda and AA are similar matrices.

note

Explanation:
Say we have a n×nn\times n matrix AA, x1,x2,,xn\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_n are eigenvectors of AA, and λ1,λ2,,λn\lambda_1, \lambda_2, \cdots, \lambda_n are the eigenvalues of AA.
S=[x1x2xn],S=\begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n} \\ \vdots & \vdots & \cdots & \vdots \\ \end{bmatrix},

Λ=[λ1000λ2000λn]\Lambda=\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{bmatrix}
We have seen HERE that,

Λ=S1AS\Lambda =S^{-1}AS

So, Λ\Lambda and AA are similar matrices.
AA has a family of similar matrices and Λ\Lambda is the best(simplest) similar matrix among them.

Let's take an example,
Say A=[2112]A= \begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}
Eigenvalues of AA are 3,13,1 so Λ=[3001]\Lambda= \begin{bmatrix} 3&0\\ 0&1 \end{bmatrix}
So [2112]\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix} and [3001]\begin{bmatrix} 3&0\\ 0&1 \end{bmatrix} are similar matrices.
Let's get another similar matrix using B=M1AMB=M^{-1}AM.
Let's choose a random full rank(invertible) matrix MM Say M=[1401]M= \begin{bmatrix} 1&4\\ 0&1 \end{bmatrix}
So

[1401]M1[2112]A[1401]M=[21516]B\underbrace{\begin{bmatrix} 1&-4\\ 0&1 \end{bmatrix}}_{M^{-1}} \underbrace{\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} 1&4\\ 0&1 \end{bmatrix}}_{M} = \underbrace{\begin{bmatrix} -2&-15\\ 1&6 \end{bmatrix}}_{B}

\quad
So [2112]\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix} and [21516]\begin{bmatrix} -2&-15\\ 1&6 \end{bmatrix} are similar matrices.
Notice that here also eigenvalues are 3,13,1
\quad
Here we can see that [2112]A,\underbrace{\begin{bmatrix} 2&1\\ 1&2 \end{bmatrix}}_{A},\quad [3001]Λ,\underbrace{\begin{bmatrix} 3&0\\ 0&1 \end{bmatrix}}_{\Lambda},\quad and [21516]B\underbrace{\begin{bmatrix} -2&-15\\ 1&6 \end{bmatrix}}_{B} have same eigenvalues 3,13,1 we can verify it by trace()=4\text{trace}(\cdot) = 4 and det()=3\text{det}(\cdot) = 3

info

Similar matrices have same eigenvalues

note

Explanation:
Say we have a n×nn\times n matrices AA, x1,x2,,xn\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_n are eigenvectors of AA, and λ1,λ2,,λn\lambda_1, \lambda_2, \cdots, \lambda_n are the eigenvalues of AA.
So Axi=λixA\vec{x}_i=\lambda_i \vec{x}
(MM1=InMM^{-1}=\mathcal{I}_n)
AInxi=λixA\mathcal{I}_n\vec{x}_i=\lambda_i \vec{x}
AMM1xi=λixAMM^{-1}\vec{x}_i=\lambda_i \vec{x}
(M1AM)BM1xi=λiM1x\underbrace{(M^{-1}AM)}_{B} M^{-1}\vec{x}_i=\lambda_i M^{-1}\vec{x}
BM1xi(say) v=λiM1xi(say) vB \underbrace{M^{-1}\vec{x}_i}_{\text{(say) }\vec{v}}=\lambda_i \underbrace{M^{-1}\vec{x}_i}_{\text{(say) }\vec{v}}
M1M^{-1} is just a transformation of x\vec{x} from Rn\mathbb{R}^n to Rn\mathbb{R}^n
So M1xM^{-1}\vec{x} is a vector in Rn\mathbb{R}^n
Bvi=λivB \vec{v}_i=\lambda_i \vec{v}
So now we can see that eigenvalues of B=M1AMB=M^{-1}AM is same as eigenvalues of AA
And ((eigenvectors of B)=M1B)=M^{-1}(eigenvectors of AA)

What if we have same eigenvalues ?

info

If we don't have all eigenvalues to be different then, there might not be nn independent eigenvectors, so the matrix might not be diagonalizable.

note

Example
Say A=[4004]A=\begin{bmatrix} 4&0\\ 0&4 \end{bmatrix} here eigenvalues are 4,44,4 and every vector is an eigenvector because all vectors are only scaled by 44 AA doesn't change the direction
Is there any matrices similar to AA?
Say that matrix BB is similar to AA.
B=M1AMB=M^{-1}AM
B=M1[4004]MB=M^{-1}\begin{bmatrix} 4&0\\ 0&4 \end{bmatrix}M
B=4M1[1001]MB=4M^{-1}\begin{bmatrix} 1&0\\ 0&1 \end{bmatrix}M
B=4M1IMB=4M^{-1}\mathcal{I}M
B=4M1MB=4M^{-1}M
B=4IB=4\mathcal{I}
B=[4004]B=\begin{bmatrix} 4&0\\ 0&4 \end{bmatrix}
So similar matrix for AA is only AA itself.

info

It is not necessary that if our eigenvalues repeat then we can't have similar matrices.

note

Example
Say A=[4104]A=\begin{bmatrix} 4&1\\ 0&4 \end{bmatrix} here eigenvalues are 4,44,4
It has a bunch of similar matrices, like

[4104], [4074], [7212],\begin{bmatrix} 4&1\\ 0&4 \end{bmatrix}, \ \begin{bmatrix} 4&0\\ 7&4 \end{bmatrix}, \ \begin{bmatrix} 7&-2\\ 1&2 \end{bmatrix},\cdots

these all are similar matrices.