Positive Definite Matrices Say we have a n × n n\times n n × n matrix A A A then A A A is Positive Definite Matrix if any
of the below condition is satisfies,
1. 1. 1. All the eigenvalues are positive .
λ 1 > 0 , λ 2 > 0 , ⋯ , λ n > 0 \quad\lambda_1\gt 0,\lambda_2\gt 0,\cdots,\lambda_n\gt 0 λ 1 > 0 , λ 2 > 0 , ⋯ , λ n > 0
2. 2. 2. All leading determinants are positive .
For Example:
Say we have a 3 × 3 3\times 3 3 × 3 matrix A A A
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix} A = ⎣ ⎡ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎦ ⎤
A A A is a Positive Definite Matrix if,
\quad
det ( [ a 11 ] ) > 0 ; \text{det}\left( \begin{bmatrix} a_{11} \end{bmatrix} \right)\gt 0;\quad det ( [ a 11 ] ) > 0 ;
\quad
det ( [ a 11 a 12 a 21 a 22 ] ) > 0 ; \text{det}\left( \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \right)\gt 0;\quad det ( [ a 11 a 21 a 12 a 22 ] ) > 0 ;
\quad
det ( [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] ) > 0 \text{det}\left( \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix} \right)\gt 0 det ⎝ ⎛ ⎣ ⎡ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎦ ⎤ ⎠ ⎞ > 0
3. 3. 3. All pivots are positive .
4. 4. 4. A n × n n\times n n × n matrix say A A A is Positive Definite Matrix, if
x ⃗ T A x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \begin{matrix} \vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} \end{matrix} x T A x > 0 ; ∀ x ∈ R n \ 0 Proof:
Here we can use property number 1 1 1 "A matrix is positive definite matrix if all the eigenvalues are positive ."
Say that the eigenvalues of A A A are λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ 1 , λ 2 , ⋯ , λ n
Then the eigenvalues of A − 1 A^{-1} A − 1 are 1 / λ 1 , 1 / λ 2 , ⋯ , 1 / λ n 1/\lambda_1,1/\lambda_2,\cdots,1/\lambda_n 1/ λ 1 , 1/ λ 2 , ⋯ , 1/ λ n
A A A is a positive definite matrix, it's eigenvalues are positive, so
λ 1 > 0 , λ 2 > 0 , ⋯ , λ n > 0 \lambda_1\gt 0,\lambda_2\gt 0,\cdots,\lambda_n\gt 0 λ 1 > 0 , λ 2 > 0 , ⋯ , λ n > 0
⇒ 1 / λ 1 > 0 , 1 / λ 2 > 0 , ⋯ , 1 / λ n > 0 \Rightarrow \quad1/\lambda_1\gt 0,\quad1/\lambda_2\gt 0,\cdots,1/\lambda_n\gt 0 ⇒ 1/ λ 1 > 0 , 1/ λ 2 > 0 , ⋯ , 1/ λ n > 0 So by property 1 1 1 we can say that "A − 1 A^{-1} A − 1 is a Positive Definite Matrix "
Proof:
Here we can use property number 5 5 5
"A matrix (say A) is positive definite matrix if
x ⃗ T A x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T A x > 0 ; ∀ x ∈ R n \ 0 "
We know that A A A is positive definite matrix so x ⃗ T A x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T A x > 0 ; ∀ x ∈ R n \ 0
We know that B B B is positive definite matrix so x ⃗ T B x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^TB\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T B x > 0 ; ∀ x ∈ R n \ 0
For A + B A+B A + B to be positive definite matrix we need
x ⃗ T ( A + B ) x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ x ⃗ T ( A + B ) x ⃗ = x ⃗ T A x ⃗ ⏟ ( > 0 ; ∀ x ∈ R n \ 0 ⃗ ) + x ⃗ T B x ⃗ ⏟ ( > 0 ; ∀ x ∈ R n \ 0 ⃗ ) ⇒ x ⃗ T ( A + B ) x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^T(A+B)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} \\ \quad \\ \vec{x}^T(A+B)\vec{x} = \underbrace{\vec{x}^TA\vec{x}}_{(\gt 0;\forall x\in\mathbb{R}^n \char`\\ \vec{0})} + \underbrace{\vec{x}^TB\vec{x}}_{(\gt 0;\forall x\in\mathbb{R}^n \char`\\ \vec{0})} \\ \quad \\ \Rightarrow \vec{x}^T(A+B)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} \\ x T ( A + B ) x > 0 ; ∀ x ∈ R n \ 0 x T ( A + B ) x = ( > 0 ; ∀ x ∈ R n \ 0 ) x T A x + ( > 0 ; ∀ x ∈ R n \ 0 ) x T B x ⇒ x T ( A + B ) x > 0 ; ∀ x ∈ R n \ 0 So by property 5 5 5 we can say that "A + B A + B A + B is a Positive Definite Matrix "
● Say we have a m × n m\times n m × n matrix A A A and Rank ( A ) = n \text{Rank}(A)=n Rank ( A ) = n then A T A A^TA A T A is a positive definite matrix Proof:
For A T A A^TA A T A to be a positive definite matrix we need,
x ⃗ T ( A T A ) x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^T(A^TA)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T ( A T A ) x > 0 ; ∀ x ∈ R n \ 0 x ⃗ T ( A T A ) x ⃗ = ( x ⃗ T A T ) ( A x ⃗ ) \vec{x}^T(A^TA)\vec{x}=(\vec{x}^TA^T)(A\vec{x}) x T ( A T A ) x = ( x T A T ) ( A x )
⇒ x ⃗ T ( A T A ) x ⃗ = ( A x ⃗ ) T ( A x ⃗ ) \Rightarrow \vec{x}^T(A^TA)\vec{x}=(A\vec{x})^T(A\vec{x}) ⇒ x T ( A T A ) x = ( A x ) T ( A x )
Here A x ⃗ A\vec{x} A x is a vector in R n \mathbb{R}^n R n , so ( A x ⃗ ) T ( A x ⃗ ) = ∥ A x ⃗ ∥ 2 (A\vec{x})^T(A\vec{x})=\|A\vec{x}\|^2 ( A x ) T ( A x ) = ∥ A x ∥ 2
∥ A x ⃗ ∥ 2 \|A\vec{x}\|^2 ∥ A x ∥ 2 is the sum of squares so it can't be negative ∥ A x ⃗ ∥ 2 ≥ 0 \|A\vec{x}\|^2\geq 0 ∥ A x ∥ 2 ≥ 0 and ∥ A x ⃗ ∥ 2 \|A\vec{x}\|^2 ∥ A x ∥ 2 is 0 0 0 only for x ⃗ = 0 ⃗ \vec{x}=\vec{0} x = 0
because Rank ( A ) = n \text{Rank}(A)=n Rank ( A ) = n so columns are independent, so A x ⃗ = 0 ⃗ A\vec{x}=\vec{0} A x = 0 if x ⃗ = 0 ⃗ \vec{x}=\vec{0} x = 0 so it's Null space have only 0 ⃗ \vec{0} 0
⇒ x ⃗ T ( A T A ) x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \Rightarrow \vec{x}^T(A^TA)\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} ⇒ x T ( A T A ) x > 0 ; ∀ x ∈ R n \ 0
So we can say that "A T A A^TA A T A is a Positive Definite Matrix "
Say A = [ 2 6 6 19 ] A=\begin{bmatrix} 2&6\\6&19 \end{bmatrix} A = [ 2 6 6 19 ] check if A A A is Positive Definite Matrix or not, using properties described above.
Let's try using the 4 t h 4^{th} 4 t h property and see if
x ⃗ T A x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T A x > 0 ; ∀ x ∈ R n \ 0 Say x ⃗ = [ x 1 x 2 ] \vec{x}=\begin{bmatrix} x_1\\x_2 \end{bmatrix} x = [ x 1 x 2 ]
x ⃗ T A x ⃗ = [ x 1 x 2 ] [ 2 6 6 19 ] [ x 1 x 2 ] \vec{x}^TA\vec{x}= \begin{bmatrix} x_1&x_2 \end{bmatrix} \begin{bmatrix} 2&6\\6&19 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} x T A x = [ x 1 x 2 ] [ 2 6 6 19 ] [ x 1 x 2 ]
x ⃗ T A x ⃗ = 2 x 1 2 + 12 x 1 x 2 + 19 x 2 \vec{x}^TA\vec{x}=2x_1^2+12x_1x_2+19x^2 x T A x = 2 x 1 2 + 12 x 1 x 2 + 19 x 2
Now we want to know that is 2 x 1 2 + 12 x 1 x 2 + 19 x 2 > 0 2x_1^2+12x_1x_2+19x^2\gt 0 2 x 1 2 + 12 x 1 x 2 + 19 x 2 > 0
Now let's use Calculus.
Our function is f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 19 x 2 f(x_1,x_2)=2x_1^2+12x_1x_2+19x^2 f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 19 x 2
Let's find the critical points,
First we take derivative w.r.t. x 1 x_1 x 1 .
∂ f ( x 1 , x 2 ) ∂ x 1 = ∂ ( 2 x 1 2 + 12 x 1 x 2 + 19 x 2 ) ∂ x 1 ∂ f ( x 1 , x 2 ) ∂ x 1 = 4 x 1 + 12 x 2 \begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+19x^2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4x_1+12x_2 \end{matrix} ∂ x 1 ∂ f ( x 1 , x 2 ) = ∂ x 1 ∂ f ( x 1 , x 2 ) = ∂ x 1 ∂ ( 2 x 1 2 + 12 x 1 x 2 + 19 x 2 ) 4 x 1 + 12 x 2 Now equate ∂ f ( x 1 , x 2 ) ∂ x 1 = 0 \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0 ∂ x 1 ∂ f ( x 1 , x 2 ) = 0
4 x 1 + 12 x 2 = 0 ( 1 ) \begin{matrix} 4x_1+12x_2=0 \end{matrix} \quad\tag{\color{red}{1}} 4 x 1 + 12 x 2 = 0 ( 1 ) Now we take derivative w.r.t. x 2 x_2 x 2 .
∂ f ( x 1 , x 2 ) ∂ x 2 = ∂ ( 2 x 1 2 + 12 x 1 x 2 + 19 x 2 ) ∂ x 2 ∂ f ( x 1 , x 2 ) ∂ x 2 = 12 x 1 + 38 x 2 \begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+19x^2)}{\partial x_2} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=&\displaystyle 12x_1 + 38x_2 \end{matrix} ∂ x 2 ∂ f ( x 1 , x 2 ) = ∂ x 2 ∂ f ( x 1 , x 2 ) = ∂ x 2 ∂ ( 2 x 1 2 + 12 x 1 x 2 + 19 x 2 ) 12 x 1 + 38 x 2 Now equate ∂ f ( x 1 , x 2 ) ∂ x 1 = 0 \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0 ∂ x 1 ∂ f ( x 1 , x 2 ) = 0
12 x 1 + 38 x 2 = 0 ( 2 ) \begin{matrix} 12x_1 + 38x_2=0 \end{matrix} \quad\tag{\color{red}{2}} 12 x 1 + 38 x 2 = 0 ( 2 ) x 1 = 0 x_1=0 x 1 = 0 and x 2 = 0 x_2=0 x 2 = 0 satisfies this system of equations ( 1 ) and ( 2 ) (1)\text{ and }(2) ( 1 ) and ( 2 ) .
Now we got a point ( x 1 , x 2 ) = ( 0 , 0 ) (x_1,x_2)=(0,0) ( x 1 , x 2 ) = ( 0 , 0 ) but we don't know that, Is it minimum, maximum or saddle point.
To check that, Is it minimum, maximum or saddle point. We need 2 n d 2^{nd} 2 n d derivative test
∂ 2 f ( x 1 , x 2 ) ∂ x 1 2 \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2} ∂ x 1 2 ∂ 2 f ( x 1 , x 2 )
∂ 2 f ( x 1 , x 2 ) ∂ x 1 2 = ∂ ( 4 x 1 + 12 x 2 ) ∂ x 1 ∂ f ( x 1 , x 2 ) ∂ x 1 = 4 \begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4 \end{matrix} ∂ x 1 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 1 ∂ f ( x 1 , x 2 ) = ∂ x 1 ∂ ( 4 x 1 + 12 x 2 ) 4 ∂ 2 f ( x 1 , x 2 ) ∂ x 2 2 \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2} ∂ x 2 2 ∂ 2 f ( x 1 , x 2 )
∂ 2 f ( x 1 , x 2 ) ∂ x 2 2 = ∂ ( 12 x 1 + 38 x 2 ) ∂ x 2 ∂ 2 f ( x 1 , x 2 ) ∂ x 2 2 = 38 \begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=& \displaystyle \frac{\partial (12x_1 + 38x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=&\displaystyle 38 \end{matrix} ∂ x 2 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 2 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 2 ∂ ( 12 x 1 + 38 x 2 ) 38 ∂ 2 f ( x 1 , x 2 ) ∂ x 1 x 2 \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2} ∂ x 1 x 2 ∂ 2 f ( x 1 , x 2 )
∂ 2 f ( x 1 , x 2 ) ∂ x 1 x 2 = ∂ ( 4 x 1 + 12 x 2 ) ∂ x 2 ∂ 2 f ( x 1 , x 2 ) ∂ x 1 x 2 = 12 \begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=&\displaystyle 12 \end{matrix} ∂ x 1 x 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 1 x 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 2 ∂ ( 4 x 1 + 12 x 2 ) 12 (Recommended reading )
Now we have our Hessian matrix (say H H H )
H f ( x 1 , x 2 ) = [ ∂ f ∂ x 1 2 ∂ f ∂ x 1 x 2 ∂ f ∂ x 2 x 1 ∂ f ∂ x 2 2 ] Hf(x_1,x_2)=\begin{bmatrix} \displaystyle \frac{\partial f}{\partial x_1^2 } & \displaystyle \frac{\partial f}{\partial x_1x_2}\\ \displaystyle \frac{\partial f}{\partial x_2x_1} & \displaystyle \frac{\partial f}{\partial x_2^2} \end{bmatrix} H f ( x 1 , x 2 ) = ⎣ ⎡ ∂ x 1 2 ∂ f ∂ x 2 x 1 ∂ f ∂ x 1 x 2 ∂ f ∂ x 2 2 ∂ f ⎦ ⎤ H f ( x 1 , x 2 ) = [ 4 12 12 38 ] Hf(x_1,x_2)=\begin{bmatrix} 4&12\\ 12&38 \end{bmatrix} H f ( x 1 , x 2 ) = [ 4 12 12 38 ]
det ( H f ( x 1 , x 2 ) ) > 0 \text{det}(Hf(x_1,x_2))\gt 0 det ( H f ( x 1 , x 2 )) > 0 so it rules out the possibility of being a saddle point, so f ( x 1 , x 2 ) f(x_1,x_2) f ( x 1 , x 2 ) either have a maximum or a minimum.
And because ∂ 2 f ( x 1 , x 2 ) ∂ x 1 2 > 0 \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}\gt 0 ∂ x 1 2 ∂ 2 f ( x 1 , x 2 ) > 0 so f ( x 1 , x 2 ) f(x_1,x_2) f ( x 1 , x 2 )
have a minimum values at ( 0 , 0 ) (0,0) ( 0 , 0 ) and that minimum value is 0 0 0
So we had seen that the minimum value of f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 19 x 2 f(x_1,x_2)=2x_1^2+12x_1x_2+19x^2 f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 19 x 2 is 0 0 0
x ⃗ T A x ⃗ > 0 \vec{x}^TA\vec{x}\gt 0 x T A x > 0 except at x ⃗ = 0 ⃗ \vec{x}=\vec{0} x = 0 , this means that A A A is a Positive Definite Matrix
Say A = [ 2 6 6 7 ] A=\begin{bmatrix} 2&6\\6&7 \end{bmatrix} A = [ 2 6 6 7 ] check if A A A is Positive Definite Matrix or not, using properties described above.
Let's try using the 4 t h 4^{th} 4 t h property and see if
x ⃗ T A x ⃗ > 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^TA\vec{x}\gt 0;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T A x > 0 ; ∀ x ∈ R n \ 0 Say x ⃗ = [ x 1 x 2 ] \vec{x}=\begin{bmatrix} x_1\\x_2 \end{bmatrix} x = [ x 1 x 2 ]
x ⃗ T A x ⃗ = [ x 1 x 2 ] [ 2 6 6 7 ] [ x 1 x 2 ] \vec{x}^TA\vec{x}= \begin{bmatrix} x_1&x_2 \end{bmatrix} \begin{bmatrix} 2&6\\6&7 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} x T A x = [ x 1 x 2 ] [ 2 6 6 7 ] [ x 1 x 2 ]
x ⃗ T A x ⃗ = 2 x 1 2 + 12 x 1 x 2 + 7 x 2 \vec{x}^TA\vec{x}=2x_1^2+12x_1x_2+7x^2 x T A x = 2 x 1 2 + 12 x 1 x 2 + 7 x 2
Now we want to know that is 2 x 1 2 + 12 x 1 x 2 + 7 x 2 > 0 2x_1^2+12x_1x_2+7x^2\gt 0 2 x 1 2 + 12 x 1 x 2 + 7 x 2 > 0
Now let's use Calculus.
Our function is f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 7 x 2 f(x_1,x_2)=2x_1^2+12x_1x_2+7x^2 f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 7 x 2
Let's find the critical points,
First we take derivative w.r.t. x 1 x_1 x 1 .
∂ f ( x 1 , x 2 ) ∂ x 1 = ∂ ( 2 x 1 2 + 12 x 1 x 2 + 7 x 2 ) ∂ x 1 ∂ f ( x 1 , x 2 ) ∂ x 1 = 4 x 1 + 12 x 2 \begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+7x^2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4x_1+12x_2 \end{matrix} ∂ x 1 ∂ f ( x 1 , x 2 ) = ∂ x 1 ∂ f ( x 1 , x 2 ) = ∂ x 1 ∂ ( 2 x 1 2 + 12 x 1 x 2 + 7 x 2 ) 4 x 1 + 12 x 2 Now equate ∂ f ( x 1 , x 2 ) ∂ x 1 = 0 \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0 ∂ x 1 ∂ f ( x 1 , x 2 ) = 0
4 x 1 + 12 x 2 = 0 ( 1 ) \begin{matrix} 4x_1+12x_2=0 \end{matrix} \quad\tag{\color{red}{1}} 4 x 1 + 12 x 2 = 0 ( 1 ) Now we take derivative w.r.t. x 2 x_2 x 2 .
∂ f ( x 1 , x 2 ) ∂ x 2 = ∂ ( 2 x 1 2 + 12 x 1 x 2 + 7 x 2 ) ∂ x 2 ∂ f ( x 1 , x 2 ) ∂ x 2 = 12 x 1 + 14 x 2 \begin{matrix} \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=& \displaystyle \frac{\partial (2x_1^2+12x_1x_2+7x^2)}{\partial x_2} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_2}=&\displaystyle 12x_1 + 14x_2 \end{matrix} ∂ x 2 ∂ f ( x 1 , x 2 ) = ∂ x 2 ∂ f ( x 1 , x 2 ) = ∂ x 2 ∂ ( 2 x 1 2 + 12 x 1 x 2 + 7 x 2 ) 12 x 1 + 14 x 2 Now equate ∂ f ( x 1 , x 2 ) ∂ x 1 = 0 \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=0 ∂ x 1 ∂ f ( x 1 , x 2 ) = 0
12 x 1 + 14 x 2 = 0 ( 2 ) \begin{matrix} 12x_1 + 14x_2=0 \end{matrix} \quad\tag{\color{red}{2}} 12 x 1 + 14 x 2 = 0 ( 2 ) x 1 = 0 x_1=0 x 1 = 0 and x 2 = 0 x_2=0 x 2 = 0 satisfies this system of equations ( 1 ) and ( 2 ) (1)\text{ and }(2) ( 1 ) and ( 2 ) .
Now we got a point ( x 1 , x 2 ) = ( 0 , 0 ) (x_1,x_2)=(0,0) ( x 1 , x 2 ) = ( 0 , 0 ) but we don't know that, Is it minimum, maximum or saddle point.
To check that, Is it minimum, maximum or saddle point. We need 2 n d 2^{nd} 2 n d derivative test
∂ 2 f ( x 1 , x 2 ) ∂ x 1 2 \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2} ∂ x 1 2 ∂ 2 f ( x 1 , x 2 )
∂ 2 f ( x 1 , x 2 ) ∂ x 1 2 = ∂ ( 4 x 1 + 12 x 2 ) ∂ x 1 ∂ f ( x 1 , x 2 ) ∂ x 1 = 4 \begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_1} \\ \displaystyle \frac{\partial f(x_1,x_2)}{\partial x_1}=&\displaystyle 4 \end{matrix} ∂ x 1 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 1 ∂ f ( x 1 , x 2 ) = ∂ x 1 ∂ ( 4 x 1 + 12 x 2 ) 4 ∂ 2 f ( x 1 , x 2 ) ∂ x 2 2 \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2} ∂ x 2 2 ∂ 2 f ( x 1 , x 2 )
∂ 2 f ( x 1 , x 2 ) ∂ x 2 2 = ∂ ( 12 x 1 + 14 x 2 ) ∂ x 2 ∂ 2 f ( x 1 , x 2 ) ∂ x 2 2 = 14 \begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=& \displaystyle \frac{\partial (12x_1 + 14x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2}=&\displaystyle 14 \end{matrix} ∂ x 2 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 2 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 2 ∂ ( 12 x 1 + 14 x 2 ) 14 ∂ 2 f ( x 1 , x 2 ) ∂ x 1 x 2 \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2} ∂ x 1 x 2 ∂ 2 f ( x 1 , x 2 )
∂ 2 f ( x 1 , x 2 ) ∂ x 1 x 2 = ∂ ( 4 x 1 + 12 x 2 ) ∂ x 2 ∂ 2 f ( x 1 , x 2 ) ∂ x 1 x 2 = 12 \begin{matrix} \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=& \displaystyle \frac{\partial (4x_1+12x_2)}{\partial x_2} \\ \displaystyle \frac{\partial^2 f(x_1,x_2)}{\partial x_1x_2}=&\displaystyle 12 \end{matrix} ∂ x 1 x 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 1 x 2 ∂ 2 f ( x 1 , x 2 ) = ∂ x 2 ∂ ( 4 x 1 + 12 x 2 ) 12 (Recommended reading )
Now we have our Hessian matrix (say H H H )
H f ( x 1 , x 2 ) = [ ∂ f ∂ x 1 2 ∂ f ∂ x 1 x 2 ∂ f ∂ x 2 x 1 ∂ f ∂ x 2 2 ] Hf(x_1,x_2)=\begin{bmatrix} \displaystyle \frac{\partial f}{\partial x_1^2 } & \displaystyle \frac{\partial f}{\partial x_1x_2}\\ \displaystyle \frac{\partial f}{\partial x_2x_1} & \displaystyle \frac{\partial f}{\partial x_2^2} \end{bmatrix} H f ( x 1 , x 2 ) = ⎣ ⎡ ∂ x 1 2 ∂ f ∂ x 2 x 1 ∂ f ∂ x 1 x 2 ∂ f ∂ x 2 2 ∂ f ⎦ ⎤ H f ( x 1 , x 2 ) = [ 4 12 12 14 ] Hf(x_1,x_2)=\begin{bmatrix} 4&12\\ 12&14 \end{bmatrix} H f ( x 1 , x 2 ) = [ 4 12 12 14 ]
det ( H f ( x 1 , x 2 ) ) < 0 \text{det}(Hf(x_1,x_2))\lt 0 det ( H f ( x 1 , x 2 )) < 0 so ( 0 , 0 ) (0,0) ( 0 , 0 ) is the saddle point and f ( 0 , 0 ) = 0 f(0,0)=0 f ( 0 , 0 ) = 0 .
So we had seen that f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 19 x 2 f(x_1,x_2)=2x_1^2+12x_1x_2+19x^2 f ( x 1 , x 2 ) = 2 x 1 2 + 12 x 1 x 2 + 19 x 2 has neither maximum nor minimum point.
( 0 , 0 ) (0,0) ( 0 , 0 ) is a saddle point of f ( x 1 , x 2 ) f(x_1,x_2) f ( x 1 , x 2 ) and f ( 0 , 0 ) = 0 f(0,0)=0 f ( 0 , 0 ) = 0
So x ⃗ T A x ⃗ ≯ 0 ; ∀ x ∈ R n \ 0 ⃗ \vec{x}^TA\vec{x}\ngtr 0 ;\quad\forall x\in\mathbb{R}^n \char`\\ \vec{0} x T A x ≯ 0 ; ∀ x ∈ R n \ 0 , this means that A A A is a not a Positive Definite Matrix