Null Space - Reduced row echelon form Previously we saw how to get
echelon form, pivot/free column vectors of a matrix say A A A also saw how to solve A x ⃗ = 0 A\vec{x}=0 A x = 0 .
Now let's push it little further and see the reduce row echelon form of our matrix A A A .
In reduced row echelon form we use elimination and make all elements 0 0 0 above and below pivot elements.
We saw the echelon form of
A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\begin{bmatrix} 1 & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ 3 & 6 & 8 & 10\\ \end{bmatrix} A = ⎣ ⎡ 1 2 3 2 4 6 2 6 8 2 8 10 ⎦ ⎤ is say U U U
U = [ 1 2 2 2 0 0 2 4 0 0 0 0 ] U=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & \fbox{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix} U = ⎣ ⎡ 1 0 0 2 0 0 2 2 0 2 4 0 ⎦ ⎤ Now we make element above pivot = 0 =0 = 0
So let's use elimination to do it.
U = [ 1 2 2 2 0 0 2 4 0 0 0 0 ] U=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & \fbox{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix} U = ⎣ ⎡ 1 0 0 2 0 0 2 2 0 2 4 0 ⎦ ⎤ r 1 ← r 1 − r 2 r_1\leftarrow r_1-r_2 r 1 ← r 1 − r 2
U ′ = [ 1 2 0 − 2 0 0 2 4 0 0 0 0 ] U'=\begin{bmatrix} \fbox{1} & 2 & 0 & -2\\ 0 & 0 & \fbox{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix} U ′ = ⎣ ⎡ 1 0 0 2 0 0 0 2 0 − 2 4 0 ⎦ ⎤ Now make pivot elements = 1 =1 = 1
r 2 ← r 2 / 2 r_2\leftarrow r_2/2 r 2 ← r 2 /2
U ′ = [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] U'=\begin{bmatrix} \fbox{1} & 2 & 0 & -2\\ 0 & 0 & \fbox{1} & 2\\ 0 & 0 & 0 & 0\\ \end{bmatrix} U ′ = ⎣ ⎡ 1 0 0 2 0 0 0 1 0 − 2 2 0 ⎦ ⎤ Say this matrix is R R R .
R = [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] R=\begin{bmatrix} \color{DC143C}{\fbox{1}} & \color{318CE7}{2} & \color{DC143C}{0} & \color{318CE7}{-2} \\ \color{DC143C}{0} & \color{318CE7}{0} & \color{DC143C}{\fbox{1}} & \color{318CE7}{2} \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} R = ⎣ ⎡ 1 0 0 2 0 0 0 1 0 − 2 2 0 ⎦ ⎤ Here you can see that there is a 2 × 2 2\times 2 2 × 2 Identity matrix shown in red \color{DC143C}{\text{red}} red
and one more 2 × 2 2\times 2 2 × 2 matrix shown in blue \color{318CE7}{\text{blue}} blue
So R R R is something like:
R ′ = [ I F 0 0 ] R'=\begin{bmatrix} \color{DC143C}{\text{I}} & \color{318CE7}{\text{F}} \\ 0 & 0 \\ \end{bmatrix} R ′ = [ I 0 F 0 ] and here
I = [ 1 0 0 1 ] and F = [ 2 − 2 0 2 ] \color{DC143C}{ I=\begin{bmatrix} 1&0\\0&1\\ \end{bmatrix} } \text{ and } \color{318CE7}{ F=\begin{bmatrix} 2&-2\\0&2\\ \end{bmatrix} } I = [ 1 0 0 1 ] and F = [ 2 0 − 2 2 ] Here you can see that there is some reordering of columns but it's fine.
Because we are striving for x ⃗ \vec{x} x that solves R x ⃗ = 0 R\vec{x}=0 R x = 0
R x ⃗ = [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = 0 R\vec{x}=\begin{bmatrix} \color{DC143C}{\fbox{1}} & \color{318CE7}{2} & \color{DC143C}{0} & \color{318CE7}{-2} \\ \color{DC143C}{0} & \color{318CE7}{0} & \color{DC143C}{\fbox{1}} & \color{318CE7}{2} \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} \color{DC143C}{x_1}\\\color{318CE7}{x_2}\\\color{DC143C}{x_3}\\\color{318CE7}{x_4}\\ \end{bmatrix} =0 R x = ⎣ ⎡ 1 0 0 2 0 0 0 1 0 − 2 2 0 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = 0 We can also write it as:
R ′ x ⃗ ′ = [ 1 0 2 − 2 0 1 0 2 0 0 0 0 ] [ x 1 x 3 x 2 x 4 ] = 0 R'\vec{x}'=\begin{bmatrix} \color{DC143C}{\fbox{1}} & \color{DC143C}{0} & \color{318CE7}{2} & \color{318CE7}{-2} \\ \color{DC143C}{0} & \color{DC143C}{\fbox{1}} & \color{318CE7}{0} & \color{318CE7}{2} \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} \color{DC143C}{x_1}\\\color{DC143C}{x_3}\\\color{318CE7}{x_2}\\\color{318CE7}{x_4} \\ \end{bmatrix} =0 R ′ x ′ = ⎣ ⎡ 1 0 0 0 1 0 2 0 0 − 2 2 0 ⎦ ⎤ ⎣ ⎡ x 1 x 3 x 2 x 4 ⎦ ⎤ = 0 Now you can see R R R as:
R ′ = [ I F 0 0 ] R'=\begin{bmatrix} \color{DC143C}{\text{I}} & \color{318CE7}{\text{F}} \\ 0 & 0 \\ \end{bmatrix} R ′ = [ I 0 F 0 ] Remember that number of special solution is 2 \color{318CE7}{2} 2 because we have 2 free column vectors.
So we know that there are 2 \color{318CE7}{2} 2 special solution possible.
Say that special solutions are:
x ⃗ ( 1 ) = [ x 1 ( 1 ) x 2 ( 1 ) x 3 ( 1 ) x 4 ( 1 ) ] and x ⃗ ( 2 ) = [ x 1 ( 2 ) x 2 ( 2 ) x 3 ( 2 ) x 4 ( 2 ) ] \vec{x}^{(1)}=\begin{bmatrix} \color{DC143C}{x^{(1)}_1}\\\color{318CE7}{x^{(1)}_2}\\\color{DC143C}{x^{(1)}_3}\\\color{318CE7}{x^{(1)}_4}\\ \end{bmatrix} \text{ and } \vec{x}^{(2)}=\begin{bmatrix} \color{DC143C}{x^{(2)}_1}\\\color{318CE7}{x^{(2)}_2}\\\color{DC143C}{x^{(2)}_3}\\\color{318CE7}{x^{(2)}_4}\\ \end{bmatrix} x ( 1 ) = ⎣ ⎡ x 1 ( 1 ) x 2 ( 1 ) x 3 ( 1 ) x 4 ( 1 ) ⎦ ⎤ and x ( 2 ) = ⎣ ⎡ x 1 ( 2 ) x 2 ( 2 ) x 3 ( 2 ) x 4 ( 2 ) ⎦ ⎤ Now rearrange then,
x ⃗ ′ ( 1 ) = [ x 1 ( 1 ) x 3 ( 1 ) x 2 ( 1 ) x 4 ( 1 ) ] and x ⃗ ′ ( 2 ) = [ x 1 ( 2 ) x 3 ( 2 ) x 2 ( 2 ) x 4 ( 2 ) ] \vec{x}'^{(1)}=\begin{bmatrix} \color{DC143C}{x^{(1)}_1}\\\color{DC143C}{x^{(1)}_3}\\\color{318CE7}{x^{(1)}_2}\\\color{318CE7}{x^{(1)}_4}\\ \end{bmatrix} \text{ and } \vec{x}'^{(2)}=\begin{bmatrix} \color{DC143C}{x^{(2)}_1}\\\color{DC143C}{x^{(2)}_3}\\\color{318CE7}{x^{(2)}_2}\\\color{318CE7}{x^{(2)}_4}\\ \end{bmatrix} x ′ ( 1 ) = ⎣ ⎡ x 1 ( 1 ) x 3 ( 1 ) x 2 ( 1 ) x 4 ( 1 ) ⎦ ⎤ and x ′ ( 2 ) = ⎣ ⎡ x 1 ( 2 ) x 3 ( 2 ) x 2 ( 2 ) x 4 ( 2 ) ⎦ ⎤ Now stack then in a matrix say (N N N )
N = [ x 1 ( 1 ) x 1 ( 2 ) x 3 ( 1 ) x 3 ( 2 ) x 2 ( 1 ) x 2 ( 2 ) x 4 ( 1 ) x 4 ( 2 ) ] N=\begin{bmatrix} \color{DC143C}{x^{(1)}_1} & \color{DC143C}{x^{(2)}_1} \\ \color{DC143C}{x^{(1)}_3} & \color{DC143C}{x^{(2)}_3} \\ \color{318CE7}{x^{(1)}_2} & \color{318CE7}{x^{(2)}_2} \\ \color{318CE7}{x^{(1)}_4} & \color{318CE7}{x^{(2)}_4} \\ \end{bmatrix} N = ⎣ ⎡ x 1 ( 1 ) x 3 ( 1 ) x 2 ( 1 ) x 4 ( 1 ) x 1 ( 2 ) x 3 ( 2 ) x 2 ( 2 ) x 4 ( 2 ) ⎦ ⎤ and say
x pivot = [ x 1 ( 1 ) x 1 ( 2 ) x 3 ( 1 ) x 3 ( 2 ) ] ; x free = [ x 2 ( 1 ) x 2 ( 2 ) x 4 ( 1 ) x 4 ( 2 ) ] x_{\text{pivot}}=\begin{bmatrix} \color{DC143C}{x^{(1)}_1} & \color{DC143C}{x^{(2)}_1} \\ \color{DC143C}{x^{(1)}_3} & \color{DC143C}{x^{(2)}_3} \\ \end{bmatrix};\ x_{\text{free}} =\begin{bmatrix} \color{318CE7}{x^{(1)}_2} & \color{318CE7}{x^{(2)}_2} \\ \color{318CE7}{x^{(1)}_4} & \color{318CE7}{x^{(2)}_4} \\ \end{bmatrix} x pivot = [ x 1 ( 1 ) x 3 ( 1 ) x 1 ( 2 ) x 3 ( 2 ) ] ; x free = [ x 2 ( 1 ) x 4 ( 1 ) x 2 ( 2 ) x 4 ( 2 ) ] And we are free to choose free variables so let
x free = [ 1 0 0 1 ] x_{\text{free}} =\begin{bmatrix} \color{318CE7}{1} & \color{318CE7}{0} \\ \color{318CE7}{0} & \color{318CE7}{1} \\ \end{bmatrix} x free = [ 1 0 0 1 ]
Now N = [ x pivot I 2 × 2 ] N=\begin{bmatrix} \color{DC143C}{x_\text{pivot}}\\\color{318CE7}{I_{2\times2}} \end{bmatrix} N = [ x pivot I 2 × 2 ]
We want R x ⃗ ( 1 ) = 0 R\vec{x}^{(1)}=0 R x ( 1 ) = 0 and R x ⃗ ( 2 ) = 0 R\vec{x}^{(2)}=0 R x ( 2 ) = 0
⇒ R ′ x ⃗ ′ ( 1 ) = 0 \Rightarrow R'\vec{x}'^{(1)}=0 ⇒ R ′ x ′ ( 1 ) = 0 and R ′ x ⃗ ′ ( 2 ) = 0 R'\vec{x}'^{(2)}=0 R ′ x ′ ( 2 ) = 0
⇒ R ′ N = 0 \Rightarrow R'N=0 ⇒ R ′ N = 0
So R ′ N = [ I 2 × 2 F 0 0 ] [ x pivot I 2 × 2 ] = 0 R'N=\begin{bmatrix} \color{DC143C}{I_{2\times2}} & \color{318CE7}{\text{F}} \\ 0 & 0 \\ \end{bmatrix} \begin{bmatrix} \color{DC143C}{x_\text{pivot}}\\\color{318CE7}{I_{2\times2}} \end{bmatrix} = 0 R ′ N = [ I 2 × 2 0 F 0 ] [ x pivot I 2 × 2 ] = 0
⇒ x pivot I 2 × 2 + F I 2 × 2 = 0 \Rightarrow \color{DC143C}{x_\text{pivot}} \color{DC143C}{I_{2\times2}} + \color{318CE7}{\text{F}} \color{318CE7}{I_{2\times2}} =0 ⇒ x pivot I 2 × 2 + F I 2 × 2 = 0
⇒ x pivot = − F \Rightarrow \color{DC143C}{x_\text{pivot}} = - \color{318CE7}{\text{F}} ⇒ x pivot = − F
So N = [ F I 2 × 2 ] N=\begin{bmatrix} \color{318CE7}{\text{F}} \\ \color{318CE7}{I_{2\times2}}\\ \end{bmatrix} N = [ F I 2 × 2 ]
And we know that F = [ 2 − 2 0 2 ] \color{318CE7}{ F=\begin{bmatrix} 2&-2\\0&2\\ \end{bmatrix} } F = [ 2 0 − 2 2 ]
So N = [ − 2 2 0 − 2 1 0 0 1 ] N=\begin{bmatrix} \color{DC143C}{-2} & \color{DC143C}{2} \\ \color{DC143C}{0} & \color{DC143C}{-2} \\ \color{318CE7}{1} & \color{318CE7}{0} \\ \color{318CE7}{0} & \color{318CE7}{1} \\ \end{bmatrix} N = ⎣ ⎡ − 2 0 1 0 2 − 2 0 1 ⎦ ⎤
⇒ x ⃗ ′ ( 1 ) = [ x 1 ( 1 ) x 3 ( 1 ) x 2 ( 1 ) x 4 ( 1 ) ] = [ − 2 0 1 0 ] and x ⃗ ′ ( 2 ) = [ x 1 ( 2 ) x 3 ( 2 ) x 2 ( 2 ) x 4 ( 2 ) ] = [ 2 − 2 0 1 ] \Rightarrow \vec{x}'^{(1)}=\begin{bmatrix} \color{DC143C}{x^{(1)}_1}\\\color{DC143C}{x^{(1)}_3}\\\color{318CE7}{x^{(1)}_2}\\\color{318CE7}{x^{(1)}_4}\\ \end{bmatrix} = \begin{bmatrix} \color{DC143C}{-2}\\\color{DC143C}{0}\\\color{318CE7}{1}\\\color{318CE7}{0}\\ \end{bmatrix} \text{ and } \ \vec{x}'^{(2)}=\begin{bmatrix} \color{DC143C}{x^{(2)}_1}\\\color{DC143C}{x^{(2)}_3}\\\color{318CE7}{x^{(2)}_2}\\\color{318CE7}{x^{(2)}_4}\\ \end{bmatrix} = \begin{bmatrix} \color{DC143C}{2}\\\color{DC143C}{-2}\\\color{318CE7}{0}\\\color{318CE7}{1}\\ \end{bmatrix} ⇒ x ′ ( 1 ) = ⎣ ⎡ x 1 ( 1 ) x 3 ( 1 ) x 2 ( 1 ) x 4 ( 1 ) ⎦ ⎤ = ⎣ ⎡ − 2 0 1 0 ⎦ ⎤ and x ′ ( 2 ) = ⎣ ⎡ x 1 ( 2 ) x 3 ( 2 ) x 2 ( 2 ) x 4 ( 2 ) ⎦ ⎤ = ⎣ ⎡ 2 − 2 0 1 ⎦ ⎤ ⇒ x ⃗ ( 1 ) = [ x 1 ( 1 ) x 2 ( 1 ) x 3 ( 1 ) x 4 ( 1 ) ] = [ − 2 1 0 0 ] and x ⃗ ( 2 ) = [ x 1 ( 2 ) x 2 ( 2 ) x 3 ( 2 ) x 4 ( 2 ) ] = [ 2 0 − 2 1 ] \Rightarrow\vec{x}^{(1)}=\begin{bmatrix} \color{DC143C}{x^{(1)}_1}\\\color{318CE7}{x^{(1)}_2}\\\color{DC143C}{x^{(1)}_3}\\\color{318CE7}{x^{(1)}_4}\\ \end{bmatrix} = \begin{bmatrix} \color{DC143C}{-2}\\\color{DC143C}{1}\\\color{318CE7}{0}\\\color{318CE7}{0}\\ \end{bmatrix} \text{ and } \ \vec{x}^{(2)}=\begin{bmatrix} \color{DC143C}{x^{(2)}_1}\\\color{318CE7}{x^{(2)}_2}\\\color{DC143C}{x^{(2)}_3}\\\color{318CE7}{x^{(2)}_4}\\ \end{bmatrix} = \begin{bmatrix} \color{DC143C}{2}\\\color{DC143C}{0}\\\color{318CE7}{-2}\\\color{318CE7}{1}\\ \end{bmatrix} ⇒ x ( 1 ) = ⎣ ⎡ x 1 ( 1 ) x 2 ( 1 ) x 3 ( 1 ) x 4 ( 1 ) ⎦ ⎤ = ⎣ ⎡ − 2 1 0 0 ⎦ ⎤ and x ( 2 ) = ⎣ ⎡ x 1 ( 2 ) x 2 ( 2 ) x 3 ( 2 ) x 4 ( 2 ) ⎦ ⎤ = ⎣ ⎡ 2 0 − 2 1 ⎦ ⎤ So our Null space is space of all x ⃗ \vec{x} x that are linear combinations of
[ − 2 1 0 0 ] \begin{bmatrix} -2\\1\\0\\0\\ \end{bmatrix} ⎣ ⎡ − 2 1 0 0 ⎦ ⎤ and
[ 2 0 − 2 1 ] \begin{bmatrix} 2\\0\\-2\\1\\ \end{bmatrix} ⎣ ⎡ 2 0 − 2 1 ⎦ ⎤
x = α [ − 2 1 0 0 ] + β [ 2 0 − 2 1 ] ; α , β ∈ R x=\alpha \begin{bmatrix} -2\\1\\0\\0\\ \end{bmatrix} + \beta \begin{bmatrix} 2\\0\\-2\\1\\ \end{bmatrix};\quad \alpha,\beta\in\mathbb{R} x = α ⎣ ⎡ − 2 1 0 0 ⎦ ⎤ + β ⎣ ⎡ 2 0 − 2 1 ⎦ ⎤ ; α , β ∈ R