Skip to main content

Null Space - Echelon form

We discussed what a Null Space is, but how to find a Null space for an arbitrary large matrix, We can't do that by hands. So what are the steps (Algorithm) to find the Null space.

To find Null Space first we convert our matrix (say AA) in echelon form using Elimination technique.
For example say our matrix is,

A=[1222246836810]A=\begin{bmatrix} 1 & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ 3 & 6 & 8 & 10\\ \end{bmatrix}

From now on we refer to ithi^{th} Row as rir_i and jthj^{th} column as cjc_j
box \fbox{} represent pivot element.

Step 1: of elimination method, here we make all element 00 in c1c_1 below the 1st1^{st} element.
r2r22r1r_2\leftarrow r_2-2r_1

A=[1222002436810]A=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & 2 & 4\\ 3 & 6 & 8 & 10\\ \end{bmatrix}

r3r33r1r_3\leftarrow r_3-3r_1

A=[122200240024]A=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & 2 & 4\\ 0 & 0 & 2 & 4\\ \end{bmatrix}

Step 2: of elimination method, here we make all element 00 in c2c_2 below the 2nd2^{nd} element.

A=[122200240024]A=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & 2 & 4\\ 0 & 0 & 2 & 4\\ \end{bmatrix}

Here 2nd2^{nd} element itself is 00, and all element below it also 00, so move forward.

Step 3: of elimination method, here we make all element 00 in c3c_3 below the 2nd2^{nd} element.

A=[122200240024]A=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & 2 & 4\\ 0 & 0 & 2 & 4\\ \end{bmatrix}

r3r3r2r_3\leftarrow r_3-r_2

A=[122200240000]A=\begin{bmatrix} \fbox{1} & 2 & 2 & 2\\ 0 & 0 & \fbox{2} & 4\\ 0 & 0 & 0 & 0\\ \end{bmatrix}

We end here because 3rd3^{rd} element of c4c_4 is itself 00
So we got total 22 pivots, this is also the rank of this matrix.

info

Rank(A)\text{Rank}(A) = # of pivots

Our matrix has 4 columns, 22 of them are pivot columns and other we call free columns

What are those pivot column and free columns?

info

Free columns are dependent columns.
And Pivot columns are independent columns.
we can get those free columns by a linear combination of pivot columns.

As in our example our pivot columns are c1c_1 and c3c_3, and free columns are c2c_2 and c4c_4

A=[1222246836810]A=\begin{bmatrix} 1 & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ 3 & 6 & 8 & 10\\ \end{bmatrix}

We can get c2c_2 as: c2=2c1c_2 = 2c_1
We can get c4c_4 as: c4=2(c3c1)c_4 = 2(c_3-c_1)