Skip to main content

Null Space

We discussed column space of a matrix AA as a vector space of linear combination of all of it's column vectors.
Null space is completely different thing.

info

For a matrix say AA the Null space is the space of all x\vec{x} that solves Ax=0A\vec{x}=\vec{0}

Example in 4 Dimension

Consider a matrix A=[1122463694812]A=\begin{bmatrix} 1 & 1 & 2\\ 2 & 4 & 6\\ 3 & 6 & 9\\ 4 & 8 & 12\\ \end{bmatrix}
Null space for AA is space of all the x=[x1x2x3]\vec{x} = \begin{bmatrix} x_1\\x_2\\x_3\\ \end{bmatrix} that solves Ax=0A\vec{x} = \vec{0}
Ax=[1122463694812][x1x2x3]=[0000]Ax= \begin{bmatrix} 1 & 1 & 2\\ 2 & 4 & 6\\ 3 & 6 & 9\\ 4 & 8 & 12\\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix}
So you can see our column space is R4\mathbb{R}^4 and the space we desire(Null space) is a subspace of R3\mathbb{R}^3.

What is the obvious value of x\vec x that solves Ax=0A\vec x=\vec 0?

x=0\vec x=0

What are some other value of x\vec{x} that solves Ax=0A\vec{x}=0?
x=[111]\vec{x}=\begin{bmatrix} -1 \\ -1 \\ 1 \\ \end{bmatrix} solves Ax=0A\vec{x}=0,
and x=[222]\vec{x}=\begin{bmatrix} -2 \\ -2 \\ 2 \\ \end{bmatrix}, x=[333]\vec{x}=\begin{bmatrix} -3 \\ -3 \\ 3 \\ \end{bmatrix}, x=[444],...\vec{x}=\begin{bmatrix} -4 \\ -4 \\ 4 \\ \end{bmatrix},... also solves Ax=0A\vec{x}=0.
We can summarize it as,
x=a[111];aR\vec{x}=a\begin{bmatrix} -1 \\ -1 \\ 1 \\ \end{bmatrix};\quad a\in\mathbb{R} solves Ax=0A\vec{x}=0.
What is this form (ava\vec{v}) it's a line, so Null space of AA is a line in R3\mathbb{R}^3.

How can we assure that the space we get by Ax=0A\vec{x}=0 is a vector space?

We need to show:

  • 1.1. Sum of two vectors in Null Space remains inside the null space.
  • 2.2. If we multiply a vector of Null space the resultant vector remains in that subspace
note

Say we have two vectors v\vec{v} and w\vec{w} in the Null space.
So Av=0A\vec{v}=\vec{0} and Aw=0A\vec{w}=\vec{0}
Av+Aw=0\Rightarrow A\vec{v} + A\vec{w}=\vec{0}
A(v+w)=0\Rightarrow A(\vec{v} + \vec{w})=\vec{0}
so v+w\vec{v}+\vec{w} is inside the Null space.

note

Say we have a vectors v\vec{v} in the Null space.
So Av=0A\vec{v}=\vec{0}
Say w=cv;cR\vec{w}=c\vec{v};\quad c\in\mathbb{R}
Aw=A(cv)=cAv=c0=0;{because Av=0A\vec{w}=A(c\vec{v})=cA\vec{v}=c\vec{0}=\vec{0};\quad\{\text{because }A\vec{v}=\vec{0}
So w\vec{w} is also in Null space.

info

This confirms that Null Space is a vector space.