Skip to main content

Operation on subspaces

Say S\mathcal{S} denotes the space of all 3×33\times 3 symmetric matrices.
Say U\mathcal{U} denotes the space of all 3×33\times 3 lower triangular matrices.

  • SU\mathcal{S}\cap\mathcal{U} What about all 3×33\times 3 matrices who are lower triangular AND symmetric.
    We are asking for space contain by both U\mathcal{U} AND S\mathcal{S}, OR say what is the space of SU\mathcal{S}\cap\mathcal{U}.
    And it's all 3×33\times 3 Diagonal matrices.
    And what is the dimension of all 3×33\times 3 Diagonal matrices.
info

Space of all 3×33\times 3 diagonal matrices is a subspace of all 3×33\times 3 matrices.
It has 33 independent entities for a 3×33\times 3 matrix.
So it's dimension is 33.

  • SU\mathcal{S}\cup\mathcal{U} What about matrices who are lower triangular OR symmetric.
    We are asking for space contain by both U\mathcal{U} OR S\mathcal{S},
    Or say what is the space of SU\mathcal{S}\cup\mathcal{U}.
note

But all 3×33\times 3 lower triangular OR symmetric matrices do not form a subspace of all 3×33\times 3 matrices.

But Why?
Let's say Q=SU\mathcal{Q}=\mathcal{S}\cup\mathcal{U}
Consider two matrices,

 (symmetric) A=[110100000]\text{ (symmetric) } A= \begin{bmatrix} \color{red}{1} & \color{red}{1} & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
 (lower triangular) B=[000100000]\text{ (lower triangular) }B= \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{-1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}

AQA\in\mathcal{Q} and BQB\in\mathcal{Q} so for Q\mathcal{Q} to be a vector space, linear combination of AA and BB must Q\in\mathcal{Q}.

A+B=[110000000]A+B= \begin{bmatrix} \color{red}{1} & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}

And A+BA+B is neither lower triangular and nor symmetric.
So A+BQA+B\notin \mathcal{Q}.
So Q\mathcal{Q} is not a vector space.

  • S+U\mathcal{S} + \mathcal{U} Here we took any matrix in S\mathcal{S} (say AA) and any matrix in U\mathcal{U} (sayBB), and add them.
note

You can say it's some sort to linear combinations of space S\mathcal{S} and space U\mathcal{U}.
Say you have a matrix ASA\in\mathcal{S} and a matrix BUB\in\mathcal{U}.

  • If ASαASA\in\mathcal{S}\Rightarrow \alpha\cdot A\in \mathcal{S} because S\mathcal{S} is a vector space
  • If BUβBUB\in\mathcal{U}\Rightarrow \beta\cdot B\in \mathcal{U} because U\mathcal{U} is a vector space And αR\alpha\in\mathbb{R} and βR\beta\in\mathbb{R}
    And we are looking at αA+βB;\alpha\cdot A + \beta \cdot B;\quad AS\forall A\in\mathcal{S} and BU\forall B\in\mathcal{U}.
    And it's a linear combinations in between elements of S\mathcal{S} and U\mathcal{U}.

ASA\in\mathcal{S} and BUB\in\mathcal{U} and we are looking for A+BA+B

[RRRRRRRRR]+[R00RR0RRR]=[2RRRR+R2RRR+RR+R2R]\begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} 2\mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}}+ \mathbb{R} & 2\mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}}+ \mathbb{R} & \color{green}{\mathbb{R}}+ \mathbb{R} & 2\mathbb{R} \\ \end{bmatrix}

equivalently,

[RRRRRRRRR]+[R00RR0RRR]=[RRRRRRRRR]\begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \mathbb{R} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}

now there is no boundation so,

[RRRRRRRRR]+[R00RR0RRR]=[RRRRRRRRR]\begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}

Here we have 99 independent entities for a 3×33\times 3 matrix.
So it has 99 Basis and 99 Dimensions.

We can also see it by a beautiful formula.

info

dim(S)+dim(U)=dim(SU)+dim(S+U)\text{dim}(\mathcal{S}) + \text{dim}(\mathcal{U}) = \text{dim}(\mathcal{S}\cap\mathcal{U}) + \text{dim}(\mathcal{S} + \mathcal{U})

(That is 6+6=3+96 + 6 = 3 + 9)