Skip to main content

More Examples on Matrix Space

Example 1

Consider all m×nm\times n matrices, here nn and mm are constant (say m=5m=5 and n=17n=17).
Let's denote space of all m×nm\times n matrices by M\mathcal{M}.
Now consider a subset of all m×nm\times n matrices,

note

Consider all m×nm\times n matrices with rank =1=1.
Let's denote space of all m×nm\times n matrices with rank =1=1 by Q\mathcal{Q}.

Is space of all m×nm\times n matrices with rank =1=1 (Q)(\mathcal{Q}) is a subspace of space of all m×nm\times n matrices (M)?(\mathcal{M})?
Or say Is (Q)(\mathcal{Q}) a subspace of (M)?(\mathcal{M})?

info

For (Q)(\mathcal{Q}) to be a subspace, first it had to be a vector space.

So Is (Q)(\mathcal{Q}) a vector space?

note

Space of all m×nm\times n matrices with rank =1=1 (Q)(\mathcal{Q}) do not form a vector space of all m×nm\times n matrices.

But Why?

Consider two rank 11 matrices AQA\in\mathcal{Q} and BQB\in\mathcal{Q}.

For Q\mathcal{Q} to be a vector space, linear combination of AA and BB must Q\in\mathcal{Q}.

Let's consider an example (say m=2,n=3m=2, n=3)

A=[100000] and B=[000010]A= \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \text{ and } B= \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix}

Here AA and BB both are rank 11 matrices so AQA\in\mathcal{Q} and BQB\in\mathcal{Q}.

A+B=[100010]A+B= \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix}

AA and BB are rank 11 matrices so they Q\in\mathcal{Q}.
But A+BA+B has rank = 22.
A+BA+B is a linear combination of AA and BB but because A+BA+B has rank = 22\Rightarrow A+BQA+B\notin \mathcal{Q}.
So Q\mathcal{Q} is not a vector space.

Example 2

Consider all vectors in R4\mathbb{R}^4
Let's denote space of all vectors in R4\mathbb{R}^4 by S\mathcal{S}.
Now consider a subset of all vectors in R4\mathbb{R}^4

note

Consider all vectors in R4\mathbb{R}^4 where there elements sum up to 00.
for example assume a vector vR4\vec{v}\in\mathbb{R}^4.

v=[v1Rv2Rv3Rv4R]\vec{v}=\begin{bmatrix} \color{red}{v_1\in\mathbb{R}}\\ \color{blue}{v_2\in\mathbb{R}}\\ \color{green}{v_3\in\mathbb{R}}\\ \color{brown}{v_4\in\mathbb{R}}\\ \end{bmatrix}

And we want v1+v2+v3+v4=0\color{red}{v_1} + \color{blue}{v_2} + \color{green}{v_3} + \color{brown}{v_4} =0

Let's denote space of all vectors in R4\mathbb{R}^4 where there elements sum up to 00 by Q\mathcal{Q}.
(So vQ\vec{v}\in\mathcal{Q})

Is space of all vectors in R4\mathbb{R}^4 where there elements sum up to 00 (Q)(\mathcal{Q}) is a subspace of space of all vectors in R4\mathbb{R}^4 (S)?(\mathcal{S})?
Or say Is Q\mathcal{Q} a subspace of S?\mathcal{S}?

note

Yes, Q\mathcal{Q} a subspace of S\mathcal{S}.

But How? Consider vectors in R4\mathbb{R}^4 where there elements sum up to 00, vQ\vec{v}\in\mathcal{Q} and wQ\vec{w}\in\mathcal{Q}.

For Q\mathcal{Q} to be a subspace of S\mathcal{S} linear combination of v\vec{v} and w\vec{w} must Q\in\mathcal{Q}.

v=[v1Rv2Rv3Rv4R]; w=[w1Rw2Rw3Rw4R]\vec{v} = \begin{bmatrix} v_1\in\mathbb{R}\\ v_2\in\mathbb{R}\\ v_3\in\mathbb{R}\\ v_4\in\mathbb{R}\\ \end{bmatrix}; \ \vec{w} = \begin{bmatrix} w_1\in\mathbb{R}\\ w_2\in\mathbb{R}\\ w_3\in\mathbb{R}\\ w_4\in\mathbb{R}\\ \end{bmatrix}

There is a constraint on v\vec{v} and w\vec{w}, we want elements of v\vec{v} and w\vec{w} sums to 00,

vivvi=0wiwwi=0\sum_{v_i\in\vec{v}}v_i=0 \\ \sum_{w_i\in\vec{w}}w_i=0 \\

Let's take linear combination of v\vec{v} and w\vec{w} and if every linear combination of v\vec{v} and w\vec{w} Q\in\mathcal{Q} then it's a subspace of all vectors in R4\mathbb{R}^4.

αv+βw=α[v1v2v3v4]+β[w1w2w3w4];αR,βR\alpha\cdot\vec{v} +\beta\cdot\vec{w} = \alpha\cdot \begin{bmatrix} v_1\\ v_2\\ v_3\\ v_4\\ \end{bmatrix} + \beta\cdot \begin{bmatrix} w_1\\ w_2\\ w_3\\ w_4\\ \end{bmatrix} ;\quad\alpha\in\mathbb{R}, \beta\in\mathbb{R}

Say αv+βw=r\alpha\cdot\vec{v} +\beta\cdot\vec{w} = \vec{r}

r=[αv1+βw1αv2+βw2αv3+βw3αv4+βw4]\vec{r} = \begin{bmatrix} \alpha\cdot v_1 + \beta\cdot w_1 \\ \alpha\cdot v_2 + \beta\cdot w_2 \\ \alpha\cdot v_3 + \beta\cdot w_3 \\ \alpha\cdot v_4 + \beta\cdot w_4 \\ \end{bmatrix}

For Q\mathcal{Q} to be a subspace of S\mathcal{S},  rr must Q\in\mathcal{Q}.

And if rQr\in\mathcal{Q} then

rirri=0\sum_{r_i\in\vec{r}}r_i=0

Proof:

rirri=α(v1+v2+v3+v4)+β(w1+w2+w3+w4)\sum_{r_i\in\vec{r}}r_i = \alpha\cdot (v_1 + v_2 + v_3 + v_4) + \beta\cdot (w_1 + w_2 + w_3 + w_4)
rirri=α(0)+β(0)\sum_{r_i\in\vec{r}}r_i = \alpha\cdot (0) + \beta\cdot (0)
rirri=0\sum_{r_i\in\vec{r}}r_i = 0

So space of all vectors in R4\mathbb{R}^4 where there elements sum up to 00 (Q)(\mathcal{Q}) is a subspace of space of all vectors in R4\mathbb{R}^4 (S)(\mathcal{S})