Dimension and Basis Our matrix space is something like,
[ R R R R R R R R R ] \begin{bmatrix} \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} ⎣ ⎡ R R R R R R R R R ⎦ ⎤ We have 9 9 9 independent entities for every 3 × 3 3\times 3 3 × 3 matrices .
So there are 9 9 9 basis ,
[ 1 0 0 0 0 0 0 0 0 ] [ 0 1 0 0 0 0 0 0 0 ] [ 0 0 1 0 0 0 0 0 0 ] \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & \color{red}{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} ⎣ ⎡ 1 0 0 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 1 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 0 1 0 0 ⎦ ⎤ [ 0 0 0 1 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 1 0 0 0 ] \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ 0 & 0 & 0 \\ \end{bmatrix} ⎣ ⎡ 0 1 0 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 1 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 0 0 1 0 ⎦ ⎤ [ 0 0 0 0 0 0 1 0 0 ] [ 0 0 0 0 0 0 0 1 0 ] [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ \end{bmatrix} ⎣ ⎡ 0 0 1 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 1 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 0 0 0 1 ⎦ ⎤ We can get any 3 × 3 3\times 3 3 × 3 matrix by the linear combination of these 9 9 9 matrices
What is the Dimension of all 3 × 3 3\times 3 3 × 3 matrix?
There are 9 9 9 basis and by there linear combination we can get all other matrices.
So Dimension of all 3 × 3 3\times 3 3 × 3 matrices is 9 9 9 .
Our matrix space is something like,
[ R 0 0 R R 0 R R R ] \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} ⎣ ⎡ R R R 0 R R 0 0 R ⎦ ⎤ We have 6 6 6 independent entities for a 3 × 3 3\times 3 3 × 3 matrix.
So there are 6 6 6 basis ,
[ 1 0 0 0 0 0 0 0 0 ] [ 0 0 0 1 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} ⎣ ⎡ 1 0 0 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 1 0 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 1 0 0 0 0 ⎦ ⎤ [ 0 0 0 0 0 0 1 0 0 ] [ 0 0 0 0 0 0 0 1 0 ] [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ \end{bmatrix} ⎣ ⎡ 0 0 1 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 1 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 0 0 0 1 ⎦ ⎤ We can get any Lower Triangular matrix by the linear combination of these matrices
What is the Dimension of all 3 × 3 3\times 3 3 × 3 Lower Triangular matrix?
There are 6 6 6 basis and by there linear combination we can get all other Lower Triangular matrices.
So Dimension of all 3 × 3 3\times 3 3 × 3 Lower Triangular matrices is 6 6 6 .
Our matrix space is something like,
[ R R R R R R R R R ] \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} ⎣ ⎡ R R R R R R R R R ⎦ ⎤ We have 6 6 6 independent entities for a 3 × 3 3\times 3 3 × 3 matrix.
So there are 6 6 6 basis ,
[ 1 0 0 0 0 0 0 0 0 ] [ 0 0 0 1 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] \begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} ⎣ ⎡ 1 0 0 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 1 0 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 1 0 0 0 0 ⎦ ⎤ [ 0 0 0 0 0 0 1 0 0 ] [ 0 0 0 0 0 0 0 1 0 ] [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ \end{bmatrix} ⎣ ⎡ 0 0 1 0 0 0 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 1 0 0 0 ⎦ ⎤ ⎣ ⎡ 0 0 0 0 0 0 0 0 1 ⎦ ⎤ We can get any Symmetric matrix by the linear combination of these matrices
What is the Dimension of all 3 × 3 3\times 3 3 × 3 Symmetric matrix?
There are 6 6 6 basis and by there linear combination we can get all other Symmetric matrices.
So Dimension of all 3 × 3 3\times 3 3 × 3 Symmetric matrices is 6 6 6 .