Skip to main content

Dimension and Basis

Basis of all 3×33\times 3 matrices

Our matrix space is something like,

note
[RRRRRRRRR]\begin{bmatrix} \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}

We have 99 independent entities for every 3×33\times 3 matrices.
So there are 99 basis,

note
[100000000][010000000][001000000]\begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & \color{red}{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
[000100000][000010000][000001000]\begin{bmatrix} 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ 0 & 0 & 0 \\ \end{bmatrix}
[000000100][000000010][000000001]\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ \end{bmatrix}
info

We can get any 3×33\times 3 matrix by the linear combination of these 99 matrices

What is the Dimension of all 3×33\times 3 matrix?

info

There are 99 basis and by there linear combination we can get all other matrices.
So Dimension of all 3×33\times 3 matrices is 99.

Basis of all 3×33\times 3 Lower Triangular matrices

Our matrix space is something like,

note
[R00RR0RRR]\begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}

We have 66 independent entities for a 3×33\times 3 matrix.
So there are 66 basis,

note
[100000000][000100000][000010000]\begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
[000000100][000000010][000000001]\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ \end{bmatrix}
info

We can get any Lower Triangular matrix by the linear combination of these matrices

What is the Dimension of all 3×33\times 3 Lower Triangular matrix?

info

There are 66 basis and by there linear combination we can get all other Lower Triangular matrices.
So Dimension of all 3×33\times 3 Lower Triangular matrices is 66.

Basis of all 3×33\times 3 Symmetric matrices

Our matrix space is something like,

note
[RRRRRRRRR]\begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix}

We have 66 independent entities for a 3×33\times 3 matrix.
So there are 66 basis,

note
[100000000][000100000][000010000]\begin{bmatrix} \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
[000000100][000000010][000000001]\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \color{red}{1} & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \color{red}{1} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \color{red}{1} \\ \end{bmatrix}
info

We can get any Symmetric matrix by the linear combination of these matrices

What is the Dimension of all 3×33\times 3 Symmetric matrix?

info

There are 66 basis and by there linear combination we can get all other Symmetric matrices.
So Dimension of all 3×33\times 3 Symmetric matrices is 66.