Skip to main content

Matrix Space

Vector Interpretation

Our Interpretation of vectors is something like this,

note

Say we have a vector vR3\vec{v}\in\mathbb{R}^3
then each element of vector v\vec{v} represent an unique axis (say x,yx,y and zz).

  • these axis can be anything your salary, your SAT score, your running speed (anything which can be quantify in a number).*
    Assume a line passing thrown each element in that vector v\vec{v}.
v=[]\vec{v}=\begin{bmatrix} \color{red}{\bullet}\\ \color{blue}{\bullet}\\ \color{green}{\bullet}\\ \end{bmatrix}

interpret these ( red\color{red}{\text{red}\bullet}, blue\color{blue}{\text{blue}\bullet} and green\color{green}{\text{green}\bullet}) dots as real line R1\in\mathbb{R}^1

Matrix Interpretation

We can use our interpretation of vectors for matrices,

note

Say we have a m×nm\times n matrix say ARm×nA\in\mathbb{R}^{m\times n}
then each element of our matrix AA represent an unique axis (say u,v,w,u,v,w,\cdots).

  • These axis can be anything your salary, your SAT score, your average running speed, average temperature in past 20 days, (anything which can be quantify in a number).*
    Assume a line passing thrown each element in this matrix AA.
A=[]A=\begin{bmatrix} \color{red}{\bullet} & \color{brown}{\bullet} \\ \color{green}{\bullet} & \color{blue}{\bullet} \\ \end{bmatrix}

interpret these (red\color{red}{\text{red}\bullet}, blue\color{blue}{\text{blue}\bullet} , green\color{green}{\text{green}\bullet} and brown\color{brown}{\text{brown}\bullet})

dots as real line R1\in\mathbb{R}^1

Vector interpretation of a Matrix

We can interpret matrices as vectors.

note

Say we have a 2×22\times 2 matrix say AR2×2A\in\mathbb{R}^{2\times 2}

A=[]A=\begin{bmatrix} \color{red}{\bullet} & \color{brown}{\bullet} \\ \color{green}{\bullet} & \color{blue}{\bullet} \\ \end{bmatrix}

We can interpret it as vector say vR4\vec{v}\in\mathbb{R}^4 as,

v=[]\vec{v}=\begin{bmatrix} \color{red}{\bullet}\\ \color{brown}{\bullet}\\ \color{green}{\bullet}\\ \color{blue}{\bullet}\\ \end{bmatrix}

So we can see that our matrices are the vectors.

Matrix space

Think of all 3×33\times 3 matrices, there are not any limitation to elements, they can be anything, there are \infty of them.

info

These 3×33\times 3 matrices can we written as vectors vR9\vec{v}\in\mathbb{R}^9

  • We can add those matrices, and if we add them we got another 3×33\times 3 matrix.
  • We can multiply matrices by a scaler, and if we multiply a scaler to a 3×33\times 3 matrix we get another 3×33\times 3 matrix.
  • We can take there linear combinations and the resultant matrix will still be a 3×33\times 3 matrix
info

So the space of all 3×33\times 3 matrices is a vector space

Let's denote this space of all 3×33\times 3 matrices as M\mathcal{M}.
Now let's see sub spaces of M\mathcal{M}.

Lower Triangular

All 3×33\times 3 Lower Triangular matrices \subset All 3×33\times 3 matrices.
Is the space of all 3×33\times 3 Lower Triangular matrices is a subspace of all 3×33\times 3 matrices?

info

We know that All 3×33\times 3 Lower Triangular matrices \subset All 3×33\times 3 matrices, then,
Space of all Lower Triangular matrices is a subspace of all 3×33\times 3 matrices if,

  • All Lower Triangular 3×33\times 3 matrices form a vector space?

Do all Lower Triangular 3×33\times 3 matrices form a vector space?.

  • We can add two 3×33\times 3 Lower Triangular matrices, we got another 3×33\times 3 Lower Triangular matrix.
note
[R00RR0RRR]+[R00RR0RRR]=[R00RR0RRR]\begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}
  • We can multiply a 3×33\times 3 Lower Triangular matrices by a scaler, we get another 3×33\times 3 Lower Triangular matrix.
note
C[R00RR0RRR]=[R00RR0RRR]C\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}
  • We can take there linear combinations and the resultant matrix will still be a 3×33\times 3 matrix
note
α[R00RR0RRR]+β[R00RR0RRR]=[R00RR0RRR]\alpha\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} + \beta\cdot \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \mathbb{R} & 0 & 0 \\ \mathbb{R} & \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \end{bmatrix}

So collectively we can say that all 3×33\times 3 Lower Triangular matrices forms a vector space.
So

info

The space all 3×33\times 3 Lower Triangular matrices is a subspace of all 3×33\times 3 matrices .

Symmetric Matrix

All 3×33\times 3 Symmetric matrices \subset All 3×33\times 3 matrices.
Is the space of all 3×33\times 3 Symmetric matrices is a subspace of all 3×33\times 3 matrices?

info

We know that All 3×33\times 3 Symmetric matrices \subset All 3×33\times 3 matrices, then,
Space of all Symmetric matrices is a subspace of all 3×33\times 3 matrices if,

  • All Symmetric 3×33\times 3 matrices form a vector space?

Do all Symmetric 3×33\times 3 matrices form a vector space?.

  • We can add two 3×33\times 3 Symmetric matrices, we got another 3×33\times 3 Symmetric matrix.
note
[RRRRRRRRR]+[RRRRRRRRR]=[2RR+RR+RR+R2RR+RR+RR+R2R]\begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \begin{bmatrix} \mathbb{R} & \color{brown}{\mathbb{R}} & \color{magenta}{\mathbb{R}} \\ \color{brown}{\mathbb{R}} & \mathbb{R} & \color{orange}{\mathbb{R}} \\ \color{magenta}{\mathbb{R}} & \color{orange}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} 2\mathbb{R} & \color{red}{\mathbb{R}}+\color{brown}{\mathbb{R}} & \color{blue}{\mathbb{R}}+\color{magenta}{\mathbb{R}} \\ \color{red}{\mathbb{R}}+\color{brown}{\mathbb{R}} & 2\mathbb{R} & \color{green}{\mathbb{R}}+\color{orange}{\mathbb{R}} \\ \color{blue}{\mathbb{R}}+\color{magenta}{\mathbb{R}} & \color{green}{\mathbb{R}}+\color{orange}{\mathbb{R}} & 2\mathbb{R} \\ \end{bmatrix}
  • We can multiply a 3×33\times 3 Symmetric matrices by a scaler, we get another 3×33\times 3 Symmetric matrix.
note
C[RRRRRRRRR]=[CRCRCRCRCRCRCRCRCR]C\cdot \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} C\cdot\mathbb{R} & \color{red}{C\cdot\mathbb{R}} & \color{blue}{C\cdot\mathbb{R}} \\ \color{red}{C\cdot\mathbb{R}} & C\cdot\mathbb{R} & \color{green}{C\cdot\mathbb{R}} \\ \color{blue}{C\cdot\mathbb{R}} & \color{green}{C\cdot\mathbb{R}} & C\cdot\mathbb{R} \\ \end{bmatrix}
  • We can take there linear combinations and the resultant matrix will still be a 3×33\times 3 matrix
note
α[RRRRRRRRR]+β[RRRRRRRRR]=[αR+βRαR+βRαR+βRαR+βRαR+βRαR+βRαR+βRαR+βRαR+βR]\alpha\cdot \begin{bmatrix} \mathbb{R} & \color{red}{\mathbb{R}} & \color{blue}{\mathbb{R}} \\ \color{red}{\mathbb{R}} & \mathbb{R} & \color{green}{\mathbb{R}} \\ \color{blue}{\mathbb{R}} & \color{green}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} + \beta\cdot \begin{bmatrix} \mathbb{R} & \color{brown}{\mathbb{R}} & \color{magenta}{\mathbb{R}} \\ \color{brown}{\mathbb{R}} & \mathbb{R} & \color{orange}{\mathbb{R}} \\ \color{magenta}{\mathbb{R}} & \color{orange}{\mathbb{R}} & \mathbb{R} \\ \end{bmatrix} = \begin{bmatrix} \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} & \color{red}{\alpha\cdot\mathbb{R}}+\color{brown}{\beta\cdot\mathbb{R}} & \color{blue}{\alpha\cdot\mathbb{R}}+\color{magenta}{\beta\cdot\mathbb{R}} \\ \color{red}{\alpha\cdot\mathbb{R}}+\color{brown}{\beta\cdot\mathbb{R}} & \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} & \color{green}{\alpha\cdot\mathbb{R}}+\color{orange}{\beta\cdot\mathbb{R}} \\ \color{blue}{\alpha\cdot\mathbb{R}}+\color{magenta}{\beta\cdot\mathbb{R}} & \color{green}{\alpha\cdot\mathbb{R}}+\color{orange}{\beta\cdot\mathbb{R}} & \alpha\cdot\mathbb{R} + \beta\cdot\mathbb{R} \\ \end{bmatrix}

So collectively we can say that all 3×33\times 3 Symmetric matrices forms a vector space.
So

info

The space all 3×33\times 3 Symmetric matrices is a subspace of all 3×33\times 3 matrices .

info

Similarly The space all 3×33\times 3 Diagonal matrices is a subspace of all 3×33\times 3 matrices .