Skip to main content

4 fundamental subspaces

Our 44 fundamental subspaces are,

  • Column Space (C(A))(C(A))
  • Null Space (N(A))(N(A))
  • Row Space
  • Left Null Space

We discussed about Column Space and Null Space what new is Row Space and Left Null Space.

Row Space

Say we have a m×nm\times n matrix AA.
Row Space of AA is all the linear combination of rows of matrix AA.
We can also say that Row space of AA is all the linear combination of columns of matrix ATA^T.

info

So Row space of matrix AA is the Column Space of matrix ATA^T.
Row space is C(AT)C(A^T)

Left Null Space

Say we have a m×nm\times n matrix AA.
Then Left Null Space is the Null Space of ATA^T, so,

info

For a matrix AA the Left Null space is the space of all x\vec{x} that solves ATx=0A^T\vec{x}=\vec{0}

Dimensions of fundamental spaces

Dimensions of Column space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.
Here we have nn columns and each column have mm components.

info

So every column vector of matrix AA Rm\in\mathbb{R}^m.
So the Column space of matrix AA lives in Rm\mathbb{R}^m.

Rank(A)=r\text{Rank}(A)=r so we know that we have rr independent columns in matrix AA.

info

The Column space of AA is spanned by these rr independent columns vectors of matrix AA.
So then dimension of the column space is rr.

dim C(A)=r\text{dim }C(A)=r

Dimensions of Null space

Say we have a m×nm\times{n} matrix AA and Rank(A)=r\text{Rank}(A)=r.
For matrix AA the Null space is the space of all x\vec{x} that solves Ax=0A\vec{x}=\vec{0}.

info

We know that AA is a m×nm\times n matrix, so xRn\vec{x}\in\mathbb{R}^n.
So the Null space of matrix AA lives in Rn\mathbb{R}^n.

Rank(A)=r\text{Rank}(A)=r so we know that we have rr independent columns in matrix AA.
So there are nrn-r dependent column vector(special solution) in matrix AA.

info

The Null space is spanned by these nrn-r dependent column vector of matrix AA.
So then dimension of the null space of matrix AA is nrn-r.
dim N(A)=nr\text{dim }N(A)=n-r

Dimensions of Row space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.
Here we have mm rows and each row have nn components.

info

So every row vector of matrix AA Rn\in\mathbb{R}^n.
So the Row space of matrix AA lives in Rn\mathbb{R}^n.

Rank(A)=Rank(AT)\text{Rank}(A)=\text{Rank}(A^T) [proof]
Rank(A)=r\text{Rank}(A)=r\Rightarrow Rank(AT)=r\text{Rank}(A^T)=r so we know that we have rr independent columns in matrix ATA^T.
OR say that we have rr independent rows in matrix AA.

info

The Row space of AA is spanned by these rr independent row vectors of AA.
OR say that, the Column space of ATA^T is spanned by these rr independent columns vectors of ATA^T.
So then dimension of the row space of matrix AA is rr.
dim C(AT)=r\text{dim }C(A^T)=r

Dimensions of Left Null space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.
For a matrix AA the Left Null space is the space of all x\vec{x} that solves ATx=0A^T\vec{x}=\vec{0}.

info

We know that ATA^T is a n×mn\times m matrix, so xRm\vec{x}\in\mathbb{R}^m.
So the Left Null space of matrix AA lives in Rm\mathbb{R}^m.

Rank(A)=Rank(AT)\text{Rank}(A)=\text{Rank}(A^T) [proof]
Rank(A)=r\text{Rank}(A)=r\Rightarrow Rank(AT)=r\text{Rank}(A^T)=r so we know that we have rr independent columns in matrix ATA^T.
OR say that we have rr independent rows in matrix AA.

info

So there are mrm-r dependent column vector(special solution) in matrix ATA^T.
The Left Null space is spanned by these mrm-r dependent column vector in matrix AA.
So then dimension of the left null space is mrm-r.
dim N(AT)=mr\text{dim }N(A^T)=m-r

Fundamental SubspacesFundamental Subspaces

Basis of fundamental spaces

Basis of Column space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.

info

Here we have rr independent columns in AA.
And these independent columns are the basis of Column space.

We talked about Basis of Column space [HERE]

Basis of Null space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.

info

Here we have nrn-r special solutions.
And these special solutions are the basis of Null space.

We talked about Basis of Null space [HERE]

Basis of Row space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.

info

Rank(A)=r\text{Rank}(A)=r\Rightarrow Rank(AT)=r\text{Rank}(A^T)=r so here we have rr independent columns in ATA^T.
So we can also say that there are rr independent rows in AA.
And these independent rows of AA are the basis of Row space.

Example,
Say A=[123111211231]A=\begin{bmatrix} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1\\ \end{bmatrix}
It's reduced row echelon form is,
R=[101101100000]R=\begin{bmatrix} \color{318CE7}{\fbox{1}} & \color{318CE7}{0} & \color{DC143C}{1} & \color{DC143C}{1} \\ \color{318CE7}{0} & \color{318CE7}{\fbox{1}} & \color{DC143C}{1} & \color{DC143C}{0} \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}
Here we can clearly see that rank(r)(r) is 22.

note

Our row operation preserve the row space.
It mean our row space is unaffected during row operations while reducing it to reduced row echelon form.
Because we are just taking the linear combinations of rows and linear combinations of two vectors in row space remains in row space.
But column space might changed.

Here the basis for Row space is first rr row vectors in RR.
So our basis are [1011]\begin{bmatrix} 1\\0\\1\\1\\ \end{bmatrix}, [0110]\begin{bmatrix} 0\\1\\1\\0\\ \end{bmatrix}

Basis of Left Null space

Say we have a m×nm\times n matrix AA and Rank(A)=r\text{Rank}(A)=r.
For matrix AA the Left Null space is the space of all x\vec{x} that solves ATx=0A^T\vec{x}=\vec{0}.
When we reduce AA in reduced row echelon form, then # zero rows are mrm-r.
So we have mrm-r special solutions for our Left null space.
And these special solutions are the basis of Left Null space.

To find the basis we can take the transpose of AA and find the null space of ATA^T.
But this is not intuitive for row space perspective.
So what we do is while reducing the matrix AA to the reduced row echelon form(R)(R), by using Gauss-Jordan elimination technique we can keep the track of our action.
And it will result in a matrix say EE.
EA=REA=R
then last mrm-r rows of EE will be our basis for Left null space.

Example

Say

A=[123111211231]A=\begin{bmatrix} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1\\ \end{bmatrix}

Now let's find it's reduced row echelon form Gauss Jordan,

[123110011210101231001]\left[ \begin{array}{cccc|ccc} 1 & 2 & 3 & 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 1 & 0 & 0 & 1 \\ \end{array} \right]

R2R2R1R_2 \leftarrow R_2 - R_1 and R3R3R1R_3 \leftarrow R_3 - R_1

[123110001101100000101]\left[ \begin{array}{cccc|ccc} \color{318CE7}{\fbox{1}} & 2 & 3 & 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ \end{array} \right]

R2R2R_2 \leftarrow -R_2

[123110001101100000101]\left[ \begin{array}{cccc|ccc} \color{318CE7}{\fbox{1}} & 2 & 3 & 1 & 1 & 0 & 0 \\ 0 & \color{318CE7}{\fbox{1}} & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ \end{array} \right]

R1R1R2R_1 \leftarrow R_1 -R_2

[101112001101100000101]\left[ \begin{array}{cccc|ccc} \color{318CE7}{\fbox{1}} & \color{318CE7}{0} & \color{DC143C}{1} & \color{DC143C}{1} & -1 & 2 & 0 \\ \color{318CE7}{0}& \color{318CE7}{\fbox{1}} & \color{DC143C}{1} & \color{DC143C}{0} & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & \color{green}{-1} & \color{green}{0} & \color{green}{1} \\ \end{array} \right]

What is special in [101]\begin{bmatrix} \color{green}{-1}\\\color{green}{0}\\\color{green}{1}\\ \end{bmatrix}?
It's suggesting that if we take 1R1+0R2+1R3\color{green}{-1}\cdot R_1 + \color{green}{0}\cdot R_2 + \color{green}{1}\cdot R_3    of AA then we will get 0\vec{0}.
So our left null space is,

c[101];cRc\cdot \begin{bmatrix} \color{green}{-1}\\\color{green}{0}\\\color{green}{1}\\ \end{bmatrix}; \quad c\in\mathbb{R}