Skip to main content

Eigenvalues and Eigenvectors

Say that we have a n×nn\times n matrix AA and a vector vRn\vec{v}\in\mathbb{R}^n.
When we perform AvA\vec{v}, think of it as transformation of v\vec{v} into a new coordinate system whose basis vector are defined by matrix AA.
After the transformation most of the vectors changes there orientation, but there are some vectors that do not change there direction(length might has been changed) there vectors are called eigenvectors and the factor by which there length has been changed(say λ\lambda) is called eigenvalue.

So we can say that after applying transformation A,A, eigenvectors don't changes there direction.

Ax=λx;{x is eigenvectorλ is eigenvalueA\vec{x}=\lambda\vec{x};\quad \left\{\begin{matrix} \vec{x}\text{ is eigenvector}\\ \lambda\text{ is eigenvalue} \end{matrix}\right.

Example 11

note

Let's say PP is a projection matrix.
What are the eigenvalues and eigenvectors of PP?
Let's say bRn\vec{b}\in\mathbb{R}^n and the matrix space of PP is n1n-1 dimensional hyperplane.
Then when we perform PbP\vec{b} it project b\vec{b} onto the matrix space of PP (here it is obvious that b\vec{b} isn't an eigenvector).
PP project all vector x\vec{x} onto the matrix space of PP but vectors which are already in the matrix space of PP are unaffected.
So vectors which are already in the matrix space of PP are eigenvector.
And they are unaffected by PP so eigenvalue is 11.
There is one more eigenvector, vector that is perpendicular to the matrix space of PP is also an eigenvector.
And projection of that vecor is 0\vec{0} so it's eigenvalue is 00.

Facts

info
  • A n×nn\times n matrix will have nn eigenvalues

Say we have a n×nn\times n matrix AA.

A=[a11a12a1na21a22a2nan1an2ann]A=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix}

Then,

info
  • Sum of eigenvalues == Sum of diagonal elements of matrix A=a11+a22++annA = a_{11} + a_{22} + \cdots + a_{nn}
info
  • Product of eigenvalues is the determinant of AA

Solving Ax=λxA\vec{x}=\lambda\vec{x}

We want to find the eigenvalues and eigenvectors of a matrix AA.
eigenvectors does not change it's direction after applying the transformation AA.

Ax=λx;x is eigenvectorA\vec{x}=\lambda\vec{x};\quad \vec{x}\text{ is eigenvector}

Axλx=0\Rightarrow A\vec{x} - \lambda\vec{x} = \vec{0}
(AλI)x=0\Rightarrow (A - \lambda\mathcal{I})\vec{x} = \vec{0}
So we have to find λ\lambda such that there is some x0\vec{x}\neq\vec{0} in the Null Space of AλIA - \lambda\mathcal{I}.
So we want some free variables in AλIA - \lambda\mathcal{I} (or say we want Rank(AλI)<n\text{Rank}(A - \lambda\mathcal{I})\lt n )
This mean we want AλIA - \lambda\mathcal{I} to be a singular matrix.
This mean determinant of AλI=0A - \lambda\mathcal{I}=0

info

det(AλI)=0\text{det}(A - \lambda\mathcal{I})=0

This will gives us λ\lambda so we now get our matrix AλIA - \lambda\mathcal{I}
Now we have to find it's Null space we discussed it HERE.

Example

note
A=[0110]A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}

We want to find the eigenvalues and eigenvectors of a matrix AA.

Ax=λx;x is eigenvectorA\vec{x}=\lambda\vec{x};\quad \vec{x}\text{ is eigenvector}

det(AλI)=λ11λ\text{det}(A - \lambda\mathcal{I})=\begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \\ \end{vmatrix}
det(AλI)=λ21\Rightarrow \text{det}(A - \lambda\mathcal{I})= \lambda^2-1
We know that det(AλI)=0\text{det}(A - \lambda\mathcal{I})=0.
λ21=0\Rightarrow \lambda^2-1=0
λ=±1\Rightarrow \lambda= \pm 1
So eigenvalues are 1,11,-1.

  • For λ=1\lambda=1
    (AλI)x=0(A-\lambda\mathcal{I})\vec{x}=\vec{0}
    (AI)x=0\Rightarrow (A-\mathcal{I})\vec{x}=\vec{0}

    AI=[1111][x1x2]=[00]A-\mathcal{I}=\begin{bmatrix} -1 & 1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\ \end{bmatrix}= \begin{bmatrix} 0\\0\\ \end{bmatrix}

    x=[11]\Rightarrow \vec{x} = \begin{bmatrix} 1\\1\\ \end{bmatrix}

  • For λ=1\lambda=-1
    (AλI)x=0(A-\lambda\mathcal{I})\vec{x}=\vec{0}
    (A+I)x=0\Rightarrow (A+\mathcal{I})\vec{x}=\vec{0}

    AI=[1111][x1x2]=[00]A-\mathcal{I}=\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \end{bmatrix} \begin{bmatrix} x_1\\x_2\\ \end{bmatrix}= \begin{bmatrix} 0\\0\\ \end{bmatrix}

    x=[11]\Rightarrow \vec{x} = \begin{bmatrix} 1\\-1\\ \end{bmatrix}

\Rightarrow eigenvectors of AA are [11]\begin{bmatrix} 1\\1\\ \end{bmatrix} and [11]\begin{bmatrix} 1\\-1\\ \end{bmatrix}

What if we add a constant αI\alpha\mathcal{I} to AA and αR\alpha\in\mathbb{R}.
We know that Ax=λx;x is eigenvectorA\vec{x}=\lambda\vec{x};\quad \vec{x}\text{ is eigenvector}.
Ax+αx=λx+αx\Rightarrow A\vec{x} + \alpha\vec{x}=\lambda\vec{x} + \alpha\vec{x} (A+αI)x=(λ+α)x\Rightarrow (A + \alpha\mathcal{I})\vec{x}=(\lambda + \alpha)\vec{x} So,

info

If a matrix AA has eigenvalue λ\lambda.
Then A+αIA + \alpha\mathcal{I} has eigenvalue λ+α\lambda+\alpha.

Example(90o90^o Rotation)

note
A=[0110]A=\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ \end{bmatrix}

We want to find the eigenvalues and eigenvectors of a matrix AA.

Ax=λx;x is eigenvectorA\vec{x}=\lambda\vec{x};\quad \vec{x}\text{ is eigenvector}

det(AλI)=λ11λ\text{det}(A - \lambda\mathcal{I})=\begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \\ \end{vmatrix}
det(AλI)=λ2+1\Rightarrow \text{det}(A - \lambda\mathcal{I})= \lambda^2+1
We know that det(AλI)=0\text{det}(A - \lambda\mathcal{I})=0.
λ2+1=0\Rightarrow \lambda^2+1=0
λ=±i\Rightarrow \lambda= \pm i
So eigenvalues are i,ii,-i.
eigenvalues not necessarily need to be real numbers, here eigenvalues are complex numbers.