Before we dive into Differential Equation first let's see what meant by Matrix Exponential .
We are familiar with power series of e x e^{x} e x .
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots e x = 1 + x + 2 ! x 2 + 3 ! x 3 + ⋯ Now say we have a n × n n\times n n × n matrix A A A and we want to find e A e^{A} e A
Then power series of e A e^A e A is,
e A = I n + A + A 2 2 ! + A 3 3 ! + ⋯ \begin{matrix} \\ \quad \displaystyle e^A=\mathcal{I}_n+A+\frac{A^2}{2!}+\frac{A^3}{3!}+\cdots \quad\\ \\ \end{matrix} e A = I n + A + 2 ! A 2 + 3 ! A 3 + ⋯ d d t e t A = A e t A \displaystyle \frac{d}{dt}e^{tA}=Ae^{tA} d t d e t A = A e t A Proof:
d d t e t A = d d t ( I n + t A + ( t A ) 2 2 ! + ( t A ) 3 3 ! + ⋯ ) d d t e t A = 0 n + A + t ( A ) 2 + t 2 ( A ) 3 2 ! + t 3 ( A ) 4 3 ! + ⋯ d d t e t A = A ( I n + t ( A ) + t 2 ( A ) 2 2 ! + t 3 ( A ) 3 3 ! + ⋯ ) \frac{d}{dt}e^{tA}=\frac{d}{dt}\left(\mathcal{I}_n+tA+\frac{(tA)^2}{2!}+\frac{(tA)^3}{3!}+\cdots\right) \\ \frac{d}{dt}e^{tA}=\mathbb{0}_n+A+t(A)^2+\frac{t^2(A)^3}{2!}+\frac{t^3(A)^4}{3!}+\cdots \\ \frac{d}{dt}e^{tA}=A\left(\mathcal{I}_n+t(A)+\frac{t^2(A)^2}{2!}+\frac{t^3(A)^3}{3!}+\cdots\right) d t d e t A = d t d ( I n + t A + 2 ! ( t A ) 2 + 3 ! ( t A ) 3 + ⋯ ) d t d e t A = 0 n + A + t ( A ) 2 + 2 ! t 2 ( A ) 3 + 3 ! t 3 ( A ) 4 + ⋯ d t d e t A = A ( I n + t ( A ) + 2 ! t 2 ( A ) 2 + 3 ! t 3 ( A ) 3 + ⋯ ) d d t e t A = A e t A ✓ \begin{matrix} \\ \quad \displaystyle \frac{d}{dt}e^{tA}=Ae^{tA} \quad\\ \\ \end{matrix}_{\quad✓} d t d e t A = A e t A ✓ \quad
e t A x ⃗ = e λ t x ⃗ \displaystyle e^{tA}\vec{x}=e^{\lambda t}\vec{x} e t A x = e λ t x Proof:
Here λ \lambda λ is an eigenvalue of A A A with eigenvectors x ⃗ \vec{x} x
e A = I n + A + A 2 2 ! + A 3 3 ! + ⋯ ⇒ e t A = I n + t A + t 2 A 2 2 ! + t 3 A 3 3 ! + ⋯ ⇒ e t A x ⃗ = I n x ⃗ + t A x ⃗ + t 2 A 2 2 ! x ⃗ + t 3 A 3 3 ! x ⃗ + ⋯ e^A=\mathcal{I}_n+A+\frac{A^2}{2!}+\frac{A^3}{3!}+\cdots \\ \Rightarrow e^{tA}=\mathcal{I}_n+tA+\frac{t^2A^2}{2!}+\frac{t^3A^3}{3!}+\cdots \\ \Rightarrow e^{tA}\vec{x}=\mathcal{I}_n\vec{x}+tA\vec{x}+\frac{t^2A^2}{2!}\vec{x}+\frac{t^3A^3}{3!}\vec{x}+\cdots e A = I n + A + 2 ! A 2 + 3 ! A 3 + ⋯ ⇒ e t A = I n + t A + 2 ! t 2 A 2 + 3 ! t 3 A 3 + ⋯ ⇒ e t A x = I n x + t A x + 2 ! t 2 A 2 x + 3 ! t 3 A 3 x + ⋯ We discussed that A x ⃗ = λ x ⃗ A\vec{x}=\lambda\vec{x} A x = λ x
And we also discussed that A k x ⃗ = λ k x ⃗ A^k\vec{x}=\lambda^k\vec{x} A k x = λ k x so,
⇒ e t A x ⃗ = I n x ⃗ + t λ x ⃗ + t 2 λ 2 2 ! x ⃗ + t 3 λ 3 3 ! x ⃗ + ⋯ \Rightarrow e^{tA}\vec{x}=\mathcal{I}_n\vec{x}+t\lambda\vec{x}+\frac{t^2\lambda^2}{2!}\vec{x}+\frac{t^3\lambda^3}{3!}\vec{x}+\cdots ⇒ e t A x = I n x + t λ x + 2 ! t 2 λ 2 x + 3 ! t 3 λ 3 x + ⋯ so,
e t A x ⃗ = e λ t x ⃗ ✓ \begin{matrix} \\ \quad \displaystyle e^{tA}\vec{x}=e^{\lambda t}\vec{x} \quad\\ \\ \end{matrix}_{\quad✓} e t A x = e λ t x ✓ \quad
d d t e λ t x ⃗ = A e λ t x ⃗ \displaystyle \frac{d}{dt}e^{\lambda t}\vec{x}=Ae^{\lambda t}\vec{x} d t d e λ t x = A e λ t x Proof:
d d t e λ t x ⃗ = λ e λ t x ⃗ \frac{d}{dt}e^{\lambda t}\vec{x}=\lambda e^{\lambda t}\vec{x} d t d e λ t x = λ e λ t x
⇒ d d t e λ t x ⃗ = e λ t λ x ⃗ ⏟ = A x ⃗ \Rightarrow \frac{d}{dt}e^{\lambda t}\vec{x}=e^{\lambda t}\underbrace{\lambda\vec{x}}_{=A\vec{x}} ⇒ d t d e λ t x = e λ t = A x λ x
d d t e λ t x ⃗ = A e λ t x ⃗ ✓ \begin{matrix} \\ \quad \displaystyle \frac{d}{dt}e^{\lambda t}\vec{x}=Ae^{\lambda t}\vec{x} \quad\\ \\ \end{matrix}_{\quad✓} d t d e λ t x = A e λ t x ✓ We have a vector u ⃗ = [ u 1 u 2 ⋮ u n ] ∈ R n \vec{u}=\begin{bmatrix} u_1\\u_2\\\vdots\\u_n \end{bmatrix}\in\mathbb{R}^n u = ⎣ ⎡ u 1 u 2 ⋮ u n ⎦ ⎤ ∈ R n and a n × n n\times n n × n matrix A A A .
u ⃗ ( t 0 ) = u ⃗ 0 \vec{u}(t_0)=\vec{u}_0 u ( t 0 ) = u 0
And we want to solve a differential equation,
∂ u ⃗ ∂ t = A u ⃗ \frac{\partial \vec{u}}{\partial t}=A\vec{u} ∂ t ∂ u = A u For u , α ∈ R u,\alpha\in\mathbb{R} u , α ∈ R .
Solution of ∂ u ∂ t = α u \frac{\partial u}{\partial t}=\alpha u ∂ t ∂ u = αu is,
u = C e α t u=Ce^{\alpha t} u = C e α t Say that the eigenvectors of A A A are x ⃗ 1 , x ⃗ 2 , ⋯ , x ⃗ n \vec{x}_1,\vec{x}_2,\cdots, \vec{x}_n x 1 , x 2 , ⋯ , x n ,
And say the eigenvalues of A A A are λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2 ,\cdots, \lambda_n λ 1 , λ 2 , ⋯ , λ n so,
Then the solution for u ⃗ \vec{u} u is,
u ⃗ ( t ) = C 1 e λ 1 t x ⃗ 1 + C 2 e λ 2 t x ⃗ 2 + ⋯ + C n e λ n t x ⃗ n \begin{matrix} \\ \quad \displaystyle \vec{u}(t) = C_1e^{\lambda_1 t}\vec{x}_1 + C_2e^{\lambda_2 t}\vec{x}_2 + \cdots + C_ne^{\lambda_n t}\vec{x}_n \quad\\ \\ \end{matrix} u ( t ) = C 1 e λ 1 t x 1 + C 2 e λ 2 t x 2 + ⋯ + C n e λ n t x n Example:
Say u ⃗ = [ u 1 u 2 ] ∈ R n \vec{u}=\begin{bmatrix} u_1\\u_2\\ \end{bmatrix}\in\mathbb{R}^n u = [ u 1 u 2 ] ∈ R n and
u ⃗ ( 0 ) = [ 1 0 ] \vec{u}(0)=\begin{bmatrix} 1\\0\\ \end{bmatrix} u ( 0 ) = [ 1 0 ]
And we are given,
d u 1 d t = − u 1 + 2 u 2 \frac{du_1}{dt}=-u_1+2u_2 d t d u 1 = − u 1 + 2 u 2 and
d u 2 d t = 2 u 1 − u 2 \frac{du_2}{dt}=2u_1-u_2 d t d u 2 = 2 u 1 − u 2 so,
A = [ − 1 2 1 − 2 ] ∈ R n A=\begin{bmatrix} -1 & 2\\ 1 & -2\\ \end{bmatrix}\in\mathbb{R}^n A = [ − 1 1 2 − 2 ] ∈ R n
Now we want to solve differential equation,
d u ⃗ d t = A u ⃗ \frac{d \vec{u}}{d t}=A\vec{u} d t d u = A u First of all find it's eigenvalues and eigenvectors .
discussed
about how to find them
So our eigenvalues are λ 1 = 0 \lambda_1=0 λ 1 = 0 and λ 2 = − 3 \lambda_2=-3 λ 2 = − 3
And our eigenvectors are
x ⃗ 1 = [ 2 1 ] , x ⃗ 2 = [ 1 − 1 ] \vec{x}_1 = \begin{bmatrix} 2\\1\\ \end{bmatrix},\quad \vec{x}_2 = \begin{bmatrix} 1\\-1\\ \end{bmatrix} x 1 = [ 2 1 ] , x 2 = [ 1 − 1 ] Now we got our eigenvalues and eigenvectors so solution is.
u ⃗ ( t ) = c 1 e λ 1 t x ⃗ 1 + c 2 e λ 2 t x ⃗ 2 \vec{u}(t) = c_1e^{\lambda_1 t}\vec{x}_1 + c_2e^{\lambda_2 t}\vec{x}_2 u ( t ) = c 1 e λ 1 t x 1 + c 2 e λ 2 t x 2
u ⃗ ( t ) = c 1 e 0 t [ 2 1 ] + c 2 e − 3 t [ 1 − 1 ] \vec{u}(t) = c_1e^{0 t}\begin{bmatrix} 2\\1\\ \end{bmatrix} + c_2e^{-3 t}\begin{bmatrix} 1\\-1\\ \end{bmatrix} u ( t ) = c 1 e 0 t [ 2 1 ] + c 2 e − 3 t [ 1 − 1 ]
u ⃗ ( t ) = c 1 [ 2 1 ] ⏟ steady state + c 2 e − 3 t [ 1 − 1 ] ⏟ → t → ∞ 0 ⃗ \displaystyle \vec{u}(t) = \underbrace{c_1\begin{bmatrix} 2\\1\\ \end{bmatrix}}_{\text{steady state}} + \underbrace{c_2e^{-3 t}\begin{bmatrix} 1\\-1\\ \end{bmatrix}}_{\xrightarrow [t\to \infty ]{} \vec{0}} u ( t ) = steady state c 1 [ 2 1 ] + t → ∞ 0 c 2 e − 3 t [ 1 − 1 ]
So here we can see that our eigenvalue control the state .
For λ 1 = 0 \lambda_1=0 λ 1 = 0 the state becomes steady , it does not depends on time. For λ 2 = − 3 \lambda_2=-3 λ 2 = − 3 the solution vanishes , as t t t increases. As t → ∞ t\to\infty t → ∞ solution associated with λ 2 \lambda_2 λ 2 vanishes and solution associated with λ 1 \lambda_1 λ 1 remains steady. We know that u ⃗ ( 0 ) = [ 1 0 ] \vec{u}(0) = \begin{bmatrix} 1\\0\\ \end{bmatrix} u ( 0 ) = [ 1 0 ] so,
u ⃗ ( 0 ) = c 1 [ 2 1 ] + c 2 [ 1 − 1 ] = [ 1 0 ] \vec{u}(0)= c_1\begin{bmatrix} 2\\1\\ \end{bmatrix} + c_2\begin{bmatrix} 1\\-1\\ \end{bmatrix} =\begin{bmatrix} 1\\0\\ \end{bmatrix} u ( 0 ) = c 1 [ 2 1 ] + c 2 [ 1 − 1 ] = [ 1 0 ]
By solving we get c 1 = c 2 = 1 3 c_1=c_2=\frac{1}{3} c 1 = c 2 = 3 1
So solution is,
u ⃗ ( t ) = 1 3 [ 2 1 ] ⏟ steady state + 1 3 e − 3 t [ 1 − 1 ] ⏟ → t → ∞ 0 ⃗ \begin{matrix} \\ \quad \displaystyle \vec{u}(t) = \underbrace{\frac{1}{3}\begin{bmatrix} 2\\1\\ \end{bmatrix}}_{\text{steady state}} + \underbrace{\frac{1}{3}e^{-3 t}\begin{bmatrix} 1\\-1\\ \end{bmatrix}}_{\xrightarrow [t\to \infty ]{} \vec{0}} \quad\\ \\ \end{matrix} u ( t ) = steady state 3 1 [ 2 1 ] + t → ∞ 0 3 1 e − 3 t [ 1 − 1 ] If A A A is diagonalizable then,
A = S Λ S − 1 \begin{matrix} \\ \quad \displaystyle A=S\Lambda S^{-1} \quad\\ \\ \end{matrix} A = S Λ S − 1 Where the columns of matrix S S S are eigenvectors of A A A .
S = [ ⋮ ⋮ ⋯ ⋮ x ⃗ 1 x ⃗ 2 ⋯ x ⃗ n ⋮ ⋮ ⋯ ⋮ ] S=\begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n} \\ \vdots & \vdots & \cdots & \vdots \\ \end{bmatrix} S = ⎣ ⎡ ⋮ x 1 ⋮ ⋮ x 2 ⋮ ⋯ ⋯ ⋯ ⋮ x n ⋮ ⎦ ⎤ (we discussed it HERE ) So,
e A t = S e ( Λ t ) S − 1 \displaystyle e^{At}=Se^{(\Lambda t)}S^{-1} e A t = S e ( Λ t ) S − 1 Proof:
e A = I n + A + A 2 2 ! + A 3 3 ! + ⋯ ⇒ e A t = I n + A t + t 2 A 2 2 ! + t 3 A 3 3 ! + ⋯ e^A=\mathcal{I}_n+A+\frac{A^2}{2!}+\frac{A^3}{3!}+\cdots \\ \Rightarrow e^{At}=\mathcal{I}_n+At+\frac{t^2A^2}{2!}+\frac{t^3A^3}{3!}+\cdots e A = I n + A + 2 ! A 2 + 3 ! A 3 + ⋯ ⇒ e A t = I n + A t + 2 ! t 2 A 2 + 3 ! t 3 A 3 + ⋯ As we know that A = S Λ S − 1 A=S\Lambda S^{-1} A = S Λ S − 1
⇒ e A t = I n + S Λ S − 1 t + t 2 ( S Λ S − 1 ) 2 2 ! + t 3 ( S Λ S − 1 ) 3 3 ! + ⋯ \Rightarrow e^{At}=\mathcal{I}_n+S\Lambda S^{-1}t+\frac{t^2(S\Lambda S^{-1})^2}{2!}+\frac{t^3(S\Lambda S^{-1})^3}{3!}+\cdots ⇒ e A t = I n + S Λ S − 1 t + 2 ! t 2 ( S Λ S − 1 ) 2 + 3 ! t 3 ( S Λ S − 1 ) 3 + ⋯ As we discussed that A k = ( S Λ S − 1 ) k = S Λ k S − 1 A^k=(S\Lambda S^{-1})^k=S\Lambda^k S^{-1} A k = ( S Λ S − 1 ) k = S Λ k S − 1
⇒ e A t = I n + S Λ S − 1 t + t 2 S Λ 2 S − 1 2 ! + t 3 S Λ 3 S − 1 3 ! + ⋯ ⇒ e A t = I n + S Λ S − 1 t + t 2 S Λ 2 S − 1 2 ! + t 3 S Λ 3 S − 1 3 ! + ⋯ ⇒ e A t = S ( I n + Λ t + t 2 Λ 2 2 ! + t 3 Λ 3 3 ! + ⋯ ) S − 1 \Rightarrow e^{At}=\mathcal{I}_n+S\Lambda S^{-1}t+\frac{t^2 S\Lambda^2 S^{-1}}{2!}+\frac{t^3 S\Lambda^3 S^{-1}}{3!}+\cdots \\ \Rightarrow e^{At}=\mathcal{I}_n+S\Lambda S^{-1}t+\frac{t^2 S\Lambda^2 S^{-1}}{2!}+\frac{t^3 S\Lambda^3 S^{-1}}{3!}+\cdots \\ \Rightarrow e^{At}=S\left(\mathcal{I}_n+\Lambda t+\frac{t^2 \Lambda^2}{2!}+\frac{t^3 \Lambda^3}{3!}+\cdots\right)S^{-1} ⇒ e A t = I n + S Λ S − 1 t + 2 ! t 2 S Λ 2 S − 1 + 3 ! t 3 S Λ 3 S − 1 + ⋯ ⇒ e A t = I n + S Λ S − 1 t + 2 ! t 2 S Λ 2 S − 1 + 3 ! t 3 S Λ 3 S − 1 + ⋯ ⇒ e A t = S ( I n + Λ t + 2 ! t 2 Λ 2 + 3 ! t 3 Λ 3 + ⋯ ) S − 1 So,
e A t = S e ( Λ t ) S − 1 ✓ \begin{matrix} \\ \quad \displaystyle e^{At}=S e^{(\Lambda t)} S^{-1} \quad\\ \\ \end{matrix}_{\quad✓} e A t = S e ( Λ t ) S − 1 ✓ And remember that it's true only if A A A is Diagonalizable
\quad
u ⃗ ( t ) = S e Λ t S − 1 x ⃗ \displaystyle \vec{u}(t)=Se^{\Lambda t}S^{-1}\vec{x} u ( t ) = S e Λ t S − 1 x Proof:
We know that
u ⃗ ( t ) = c e λ t x ⃗ \vec{u}(t)=ce^{\lambda t}\vec{x} u ( t ) = c e λ t x where c ∈ R c\in\mathbb{R} c ∈ R is a constant,
λ \lambda λ is our eigenvalue and x ⃗ \vec{x} x is our eigenvectors .
And as we discussed above
e λ t x ⃗ = e A t x ⃗ e^{\lambda t}\vec{x}=e^{At}\vec{x} e λ t x = e A t x so,
u ⃗ ( t ) = c e A t x ⃗ \vec{u}(t)=ce^{At}\vec{x} u ( t ) = c e A t x We also discussed that
e A t = S e ( Λ t ) S − 1 e^{At}=Se^{(\Lambda t)}S^{-1} e A t = S e ( Λ t ) S − 1 so,
u ⃗ ( t ) = c S e ( Λ t ) S − 1 x ⃗ \vec{u}(t)=cSe^{(\Lambda t)}S^{-1}\vec{x} u ( t ) = c S e ( Λ t ) S − 1 x And we can get the value of c c c using initial condition u ⃗ ( t 0 ) = u ⃗ 0 \vec{u}(t_0)=\vec{u}_0 u ( t 0 ) = u 0 so,
u ⃗ ( t ) = S e ( Λ t ) S − 1 x ⃗ ✓ \begin{matrix} \\ \quad \displaystyle \vec{u}(t)=Se^{(\Lambda t)}S^{-1}\vec{x} \quad\\ \\ \end{matrix}_{\quad\quad✓} u ( t ) = S e ( Λ t ) S − 1 x ✓ u ⃗ ( t ) = C 1 e λ 1 t x ⃗ 1 + C 2 e λ 2 t x ⃗ 2 + ⋯ + C n e λ n t x ⃗ n \vec{u}(t) = C_1e^{\lambda_1 t}\vec{x}_1 + C_2e^{\lambda_2 t}\vec{x}_2 + \cdots + C_ne^{\lambda_n t}\vec{x}_n u ( t ) = C 1 e λ 1 t x 1 + C 2 e λ 2 t x 2 + ⋯ + C n e λ n t x n 1. 1. 1. Stable state
If u ⃗ ( t ) → t → ∞ 0 ⃗ \vec{u}(t)\xrightarrow [t\to \infty ]{} \vec{0} u ( t ) t → ∞ 0 then we say we have a stable state.
We can achieve it if all the eigenvalues are negative.
λ 1 < 0 , λ 2 < 0 , ⋯ , λ n < 0 \lambda_1\lt 0, \lambda_2\lt 0,\cdots ,\lambda_n\lt 0 λ 1 < 0 , λ 2 < 0 , ⋯ , λ n < 0
If eigenvalues are Complex say λ = a + i b ; a , b ∈ R \lambda=a+ib;\quad a,b\in\mathbb{R} λ = a + ib ; a , b ∈ R then
∥ e ( a + i b ) ∥ = ∥ e a ∥ \|e^{(a+ib)}\|=\|e^a\| ∥ e ( a + ib ) ∥ = ∥ e a ∥ so complex part doesn't matters here.
2. 2. 2. Steady state
If u ⃗ ( t ) → t → ∞ c ⃗ \vec{u}(t)\xrightarrow [t\to \infty ]{} \vec{c} u ( t ) t → ∞ c then we have a steady state
Here c ⃗ \vec{c} c is a constant vector that does not depends on t t t .
If atleast one of the eigenvalue is 0 0 0 and rest of the eigenvalues are negative
then we can say we have a steady state.
λ 1 = 0 , λ 2 = 0 , ⋯ , λ k = 0 ; \lambda_1 = 0, \lambda_2 = 0,\cdots ,\lambda_k = 0;\quad λ 1 = 0 , λ 2 = 0 , ⋯ , λ k = 0 ; 1 ≤ k ≤ n 1 \leq k \leq n 1 ≤ k ≤ n
λ k + 1 < 0 , λ k + 2 < 0 , ⋯ , λ n < 0 ; \lambda_{k+1} \lt 0, \lambda_{k+2} \lt 0,\cdots ,\lambda_n \lt 0;\quad λ k + 1 < 0 , λ k + 2 < 0 , ⋯ , λ n < 0 ; 1 ≤ k ≤ n 1 \leq k \leq n 1 ≤ k ≤ n
3. 3. 3. Blow-up
If u ⃗ ( t ) → t → ∞ ∞ ⃗ \vec{u}(t)\xrightarrow [t\to \infty ]{} \vec{\infty} u ( t ) t → ∞ ∞ then we have a blow-up
Here ∞ ⃗ \vec{\infty} ∞ means that all the elements of u ⃗ ( t ) \vec{u}(t) u ( t ) (goes to) ∞ \infty ∞
If atleast one of the eigenvalue is positive then we can say we have a blow-up.
So we can say that for a blow-up ∃ λ k > 0 ; k ∈ { 1 , 2 , 3 , ⋯ , n } \exists \lambda_k \gt 0 ;\quad k\in\{1,2,3,\cdots,n\} ∃ λ k > 0 ; k ∈ { 1 , 2 , 3 , ⋯ , n }